Проведем в равнобедренном треугольнике высоту из вершины треугольника на его основание.Высота в равнобедренном треугольнике является медианой,биссектрисой>высота делит основание на 2 равные части равные 36.Рассмотрим прямоугольный треугольник нам известна гипотенуза(она же сторона равнобедренного треугольника) и основание(оно же является половиной основания равнобедренного треугольника).По теореме Пифагора найдем неизвестную часть треугольника(она же высота в равнобедренном треугольнике) высота^2=39^2-36^2,высота=15 S=(a*h(a))/2=(72*15)/2=540 ответ:540
Шар можно вписать в любую правильную пирамиду. Центр шара лежит на высоте пирамиды и совпадает с центром окружности, вписанной в равнобедренный треугольник, боковой стороной которого является апофема пирамиды, а высотой - высота пирамиды. Радиус шара равен радиусу этой окружности.
Радиус шара R, высота пирамиды H и радиус окружности r, вписанной в основание пирамиды, связаны соотношением:
Радиус основания r = AD/2 = 10/2 = 5. Высота пирамиды H определим по теореме Пифагора из треугольника SO₁E, предварительно вычислив апофему SE
S=(a*h(a))/2=(72*15)/2=540
ответ:540
Объём шара определён формулой: .
Шар можно вписать в любую правильную пирамиду. Центр шара лежит на высоте пирамиды и совпадает с центром окружности, вписанной в равнобедренный треугольник, боковой стороной которого является апофема пирамиды, а высотой - высота пирамиды. Радиус шара равен радиусу этой окружности.
Радиус шара R, высота пирамиды H и радиус окружности r, вписанной в основание пирамиды, связаны соотношением:
Радиус основания r = AD/2 = 10/2 = 5. Высота пирамиды H определим по теореме Пифагора из треугольника SO₁E, предварительно вычислив апофему SE
Из заданного соотношения найдём радиус шара
Объём шара: