Используя данную на рисунке информацию, назови соответствующие элементы для доказательства равенства треугольников ΔATF и ΔTAD по первому признаку равенства.
F T
Pazime1_uzd.png
A D
Стороны:
1.
=
;
2.
— общая сторона у обоих треугольников.
Угол (три буквы):
∡
= ∡
.
1. Вершин получилось 5.
2. Периметр равен 45 см.
Объяснение:
1.
Так как стороны BC и DE равны и были соединены между собой, то две вершины треугольника были как бы поглощены двумя вершинами четырехугольника, то есть количество вершин будет 4 + 3 - 2, где первое слагаемое - количество вершин четырехугольника, второе - кол-во вершин треугольника и третье вычитаемое - количество пар вершин, которые соединились между собой.
2.
Так как по равным между собой BC и DE мы соединили две фигуры, то данный получившийся отрезок не будет относится к периметру получившегося многоугольника. Оставшиеся стороны узнаем, прибавляя по 2, 3, 4, 5, 6 к числу 5, так как BC = DE. Каждая сумма будет означать длину стороны многоугольника. Складываем получившиеся суммы и получаем периметр получившегося многоугольника.
5. 32см.
7.Смежные.
10. 90°.
Объяснение:
5. Раз точка D - середина отрезка АВ, то BD - половина отрезка АВ.
Раз точка С - середина отрезка BD, то ВС - половина отрезка BD.
Значит, ВС - четверть отрезка АВ, т.е. отрезок АВ в 4 раза больше отрезка ВС.
СВ= 8см, АВ=8*4=32см
7. Два угла, у которых одна сторона общая, а две другие являются продолжениями одна другой, называются смежными.
Сумма смежных углов равна 180°.
10. ∠ABD - развернутый. Значит, ∠ABD=180°
∠ABY=∠YBC
∠CBX=∠XBD
∠ABD=∠ABY+∠YBC+∠CBX+∠XBD=2∠YBC+2∠CBX=2*(∠YBC+∠CBX)=180°
∠YBC+∠CBX=180/2=90°
∠XBY=∠XBC+∠CBY=90°