Дано: в треугольнике АВС проведены медианы AA1=9 и BB1=12,сторона AB =10. Точка пересечения медиан - это точка О.
По свойству медиан АО = (2/3)*9 = 6, ОА1 = 3. ВО = (2/3)*12 = 8, ОВ1 = 4.
По трём сторонам треугольника АВО находим его площадь (формула Герона). Полупериметр р =(10+8+6)/2 = 24/2 = 12. S = √(12*2*4*6) = √(24*24) = 24. Площадь треугольника АВО составляет 1/3 треугольника АВС. Тогда S(АВC) = 3*24 = 72 кв.ед.
По соотношению квадратов сторон треугольника АВО (10² = 8² + 6²) видно, что он прямоугольный. Значит, медианы пересекаются под прямым углом. Отсюда находим стороны: ВС = 2√(8² + 3²) = 2√(64 + 9) = 2√73. АС = 2√(6² + 4²) = 2√(36 + 16) = 2√52. Теперь можно найти длину медианы СС1 по формуле: mc = (1/2)*√(2a² + 2b² - c²). СС1 = (1/2)√(2*292 + 2*208 - 100) = (1/2)*√900 = 15.
Точка пересечения медиан - это точка О.
По свойству медиан АО = (2/3)*9 = 6, ОА1 = 3.
ВО = (2/3)*12 = 8, ОВ1 = 4.
По трём сторонам треугольника АВО находим его площадь (формула Герона).
Полупериметр р =(10+8+6)/2 = 24/2 = 12.
S = √(12*2*4*6) = √(24*24) = 24.
Площадь треугольника АВО составляет 1/3 треугольника АВС.
Тогда S(АВC) = 3*24 = 72 кв.ед.
По соотношению квадратов сторон треугольника АВО (10² = 8² + 6²) видно, что он прямоугольный.
Значит, медианы пересекаются под прямым углом.
Отсюда находим стороны:
ВС = 2√(8² + 3²) = 2√(64 + 9) = 2√73.
АС = 2√(6² + 4²) = 2√(36 + 16) = 2√52.
Теперь можно найти длину медианы СС1 по формуле:
mc = (1/2)*√(2a² + 2b² - c²).
СС1 = (1/2)√(2*292 + 2*208 - 100) = (1/2)*√900 = 15.
Объяснение:
1) V(призмы)=S(осн)*h, S(осн)=S(равн.треуг.)=( а²√3)/4 , h==А₁О.
2) ΔАА₁О- прямоугольный , тк А₁О⊥(АВС) :
АО=АА₁*cos(∠A₁AO) , АО=6*1/2=3( см) ;
А₁О=АА₁*sin(∠A₁AO) , А1О=6*√3/2=3√3( см) .
3) ΔABC- равносторонний .Точка пересечения высот совпадает с точкой пересечения медиан, серединных перпендикуляров ⇒ О-центр описанной окружности : АО=R=3 см. Тогда сторона равностороннего треугольника a₃ = 3√3(см) ( формула a₃ = R√3 ).
S(осн)=S(равн.треуг.)=( 27√3)/4 (см²) .
4) V(призмы)= ( 27√3)/4 *3= (81√3)/4 (см³).