если их можно совместить и при наложении они совпадают.
Если при наложении они совпадают. Равные отрезки имеют одинаковые длины.
Если при наложении они совпадают. т.е. вершины совпадут. а лучи, выходящие из вершин, тоже при наложении совпадают. Равные углы имеют равные градусные меры.
Треугольники называют равными, если при наложении друг на друга они совпадают. У равных треугольников все три стороны одного равны трем сторонам другого. То же можно сказать и об углах.
2 представьте, построили два равных прямоугольных треугольника, у которых катеты по 3 см 4 см, а гипотенузы по 5 см. у меня нет возможности попасть в приложение. поэтому не могу Вам кинуть рисунок. Но это не сложно. АВ=ТР= 3 см, ВС= РК=4см, АС=ТК=5 см, и тогда треугольники АВС и ТРК равны.
Сначала найдем точку пересечения диагоналей параллелограмма, зная, что в этой точке диагонали делятся пополам. Координаты середины отрезка AС найдем по формуле: x = (x1 + x2)/2, y = (y1 + y2)/2, z = (z1 + z2)/2. В нашем случае Хо=(Хa+Xc )/2=(2+4 )/2=3, Yо=(Ya+Yc )/2=(3+1 )/2=2, Zо=(Za+Zc )/2=(2+0 )/2=1. Итак, мы имеем точку пересечения диагоналей параллелограмма О(3;2;1). Теперь по этой же формуле найдем координаты вершины D параллелограмма. (Xb+Xd)/2=Xo, отсюда Xd=2*Xo+Xb=2*3+0=6, аналогично. Yd=2*Yo+Yb=2*2+2=6 и Zd=2*Zo+Zb=2*1+4=6. Имеем точку D(6;6;6) Координаты вектора равны разности соответствующих координат точек его конца и начала BD{Xd-Xb;Yd-Yb;Zd-Zb} или BD{6;4;2} Длина вектора BD, или его модуль, находится по формуле: |BD|=√(X²+Y²+Z²) = √(6²+4²+2²) =√56 = 2√14. ответ: длина диагонали BD равна 2√14.
если их можно совместить и при наложении они совпадают.
Если при наложении они совпадают. Равные отрезки имеют одинаковые длины.
Если при наложении они совпадают. т.е. вершины совпадут. а лучи, выходящие из вершин, тоже при наложении совпадают. Равные углы имеют равные градусные меры.
Треугольники называют равными, если при наложении друг на друга они совпадают. У равных треугольников все три стороны одного равны трем сторонам другого. То же можно сказать и об углах.
2 представьте, построили два равных прямоугольных треугольника, у которых катеты по 3 см 4 см, а гипотенузы по 5 см. у меня нет возможности попасть в приложение. поэтому не могу Вам кинуть рисунок. Но это не сложно. АВ=ТР= 3 см, ВС= РК=4см, АС=ТК=5 см, и тогда треугольники АВС и ТРК равны.
3.
1.FDE
2.KNM
3.SKT
DBC
5. MKC
В нашем случае Хо=(Хa+Xc )/2=(2+4 )/2=3, Yо=(Ya+Yc )/2=(3+1 )/2=2, Zо=(Za+Zc )/2=(2+0 )/2=1. Итак, мы имеем точку пересечения диагоналей параллелограмма О(3;2;1).
Теперь по этой же формуле найдем координаты вершины D параллелограмма.
(Xb+Xd)/2=Xo, отсюда Xd=2*Xo+Xb=2*3+0=6, аналогично. Yd=2*Yo+Yb=2*2+2=6 и Zd=2*Zo+Zb=2*1+4=6. Имеем точку D(6;6;6)
Координаты вектора равны разности соответствующих координат точек его конца и начала BD{Xd-Xb;Yd-Yb;Zd-Zb} или BD{6;4;2}
Длина вектора BD, или его модуль, находится по формуле:
|BD|=√(X²+Y²+Z²) = √(6²+4²+2²) =√56 = 2√14.
ответ: длина диагонали BD равна 2√14.