Трапеция - р\б, иначе вокруг нее нельзя было бы описать окружность, значит боковые стороны трапеции равны.
Углы при верхнем основании не могут быть 45 градусов, ибо тогда это была бы не трапеция.
Проводим две высоты: нижнее основание делится на три отрезка( 3, 11, 3 ), потому что фигура делится на два равных треугольника (Угол и сторона) и параллелограмм.
Таким образом, чтобы найти высоту, выразим ее через тангенс данного нам угла: tg(45) = x / 3 ⇒ x = tg(45) * 3 = 3;
Отрезок EF не является средней линией треугольника Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1. То есть отрезок ВО в 2 раза больше отрезка ОD.
Рассмотрим два треугольника: основной АВС и верхний EBF. Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка — постоянная величина. Но это же относится и к другим отрезкам, не только к сторонам. В частности, к медианам. Легко увидеть, чему равно отношение медиан ВО/ВD = 2/3. Значит, и отношение оснований такое же: EF / 15 = 2/3 Отсюда EF = 10 см.
Углы при верхнем основании не могут быть 45 градусов, ибо тогда это была бы не трапеция.
Проводим две высоты: нижнее основание делится на три отрезка( 3, 11, 3 ), потому что фигура делится на два равных треугольника (Угол и сторона) и параллелограмм.
Таким образом, чтобы найти высоту, выразим ее через тангенс данного нам угла: tg(45) = x / 3 ⇒ x = tg(45) * 3 = 3;
Найдя высоту, можем посчитать площадь: (11 + 17) / 2 * 3 = 42 см².
Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1.
То есть отрезок ВО в 2 раза больше отрезка ОD.
Рассмотрим два треугольника: основной АВС и верхний EBF.
Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка — постоянная величина.
Но это же относится и к другим отрезкам, не только к сторонам.
В частности, к медианам.
Легко увидеть, чему равно отношение медиан ВО/ВD = 2/3.
Значит, и отношение оснований такое же:
EF / 15 = 2/3
Отсюда EF = 10 см.