Пусть ABC - прямоугольный треугольник (∠BAC=90°) и ∠ABC=60°. В треугольник, по условию, вписан ромб BKPM (K∈AB, P∈AC, M∈BC) так, что BK = 6. Вычислим площадь треугольника.
Рассмотрим треугольник MCP. Очевидно, что ∠MPC = ∠BAC = 90° как соответственные углы, образованные при пересечении параллельных прямых BA и MP (BA || MP как противолежащие стороны ромба) секущей AC. Используя определение тангенса, получаем, что PC = 6√3.
Рассмотрим треугольник KAP. Очевидно, что ∠KPA = ∠MCP = 30° как соответственные углы, образованные при пересечении параллельных прямых MC и KP секущей AC. Используя определение косинуса угла, получаем: AP = 3√3.
AC = AP + PC = 3√3 + 6√3 = 9√3.
Рассмотрим треугольник ABC. Используя определение тангенса угла, получаем: AB = 9.
Осевое сечение конуса это р/б треугольник, диаметр основания - основание треугольника, образующие, выходящие из концов данного диаметра , боковые стороны.
Этот треугольник также прямоугольный , углы при основании равны, а сумма острых углов в прямоугольном треугольнике 90*. Найдём их градусные меры
∠АВС=∠АСВ=90/2=45*
Площадь прямогугольника с равными катетами
ВА- образующая
Проведем высоту к основанию(АО) , она разделит р/б треугольник на два равных прямоугольных треугольника, также она будет являтся биссектрисой.
Пусть ABC - прямоугольный треугольник (∠BAC=90°) и ∠ABC=60°. В треугольник, по условию, вписан ромб BKPM (K∈AB, P∈AC, M∈BC) так, что BK = 6. Вычислим площадь треугольника.
Рассмотрим треугольник MCP. Очевидно, что ∠MPC = ∠BAC = 90° как соответственные углы, образованные при пересечении параллельных прямых BA и MP (BA || MP как противолежащие стороны ромба) секущей AC. Используя определение тангенса, получаем, что PC = 6√3.
Рассмотрим треугольник KAP. Очевидно, что ∠KPA = ∠MCP = 30° как соответственные углы, образованные при пересечении параллельных прямых MC и KP секущей AC. Используя определение косинуса угла, получаем: AP = 3√3.
AC = AP + PC = 3√3 + 6√3 = 9√3.
Рассмотрим треугольник ABC. Используя определение тангенса угла, получаем: AB = 9.
S = 1/2 *AC*AB = 81√3/2.
ответ: 81√3/2.
Расчеты прикреплены.
Осевое сечение конуса это р/б треугольник, диаметр основания - основание треугольника, образующие, выходящие из концов данного диаметра , боковые стороны.
Этот треугольник также прямоугольный , углы при основании равны, а сумма острых углов в прямоугольном треугольнике 90*. Найдём их градусные меры
∠АВС=∠АСВ=90/2=45*
Площадь прямогугольника с равными катетами
ВА- образующая
Проведем высоту к основанию(АО) , она разделит р/б треугольник на два равных прямоугольных треугольника, также она будет являтся биссектрисой.
∠ВАО=∠ОАС=45*=∠В=∠С
ΔАОВ- прямоугольный и р/б(BO=AO, ВА-гипотенуза)
По теореме Пифагора:
BO,AO-x
х=5см=ВО - радиус основания
В основании цилиндра лежит окружность,её площадь: