Используя предоставленную информацию, нарисуйте отрезок, который можно получить с тонкой линзы для тела А. И опишите, как будет выглядеть нарисованный отрезок. P.S.вопрос может быть составлен неверно, я переводил через переводчик)
Диаметр шара равен 2m. Через конец диаметра проведена плоскость под углом 45* к нему. Найдите длину линии пересечения сферы этой плоскостью.
Всякое пересечение шара плоскостью есть круг. Так как плоскость проходит через конец диаметра, то одна точка образовавшегося круга принадлежит ему и диаметру.
Граница круга – окружность, проведем хорду в ней так, чтобы одна точка принадлежала концу диаметра шара, а другую так, чтобы в итоге хорда пересекала центр окружности.
Разделим диаметр шара пополам и соединим точку, являющуюся его серединой, с точкой хорды окружности, но не принадлежащей диаметру. Образуется треугольник, две стороны которого равны, так как являются радиусами шара, это в свою очередь следует из того, что оба соединяют его центр с одной из точек поверхности шара.
Угол между основанием и одной боковой стороной, нам известен, он равен углу между плоскостью и диаметром шара – 45*.
Соответственно и второй угол при основании будет равен 45*, а третий – 90*, согласно теореме о сумме углов треугольника.
Из соотношений сторон в прямоугольном треугольнике можно легко найти диагональ сечения:
a = b : cos 45* a = b : sqrt(0,5)
b нам известен, это половина диаметра шара - его радиус. a = m : sqrt(0,5) = sqrt(2)m
Длина окружности рассчитывается по формуле: l = 2nR l = (sqrt(2) * m : 2) * 2 * n l = sqrt(2)mn
Сумма всех внутренних углов шестиугольника равна 720 градусов, т.к. шестиугольник правильный, то все эти углы равны, то есть по 720/6=120 градусов В треугольнике, который получается с двух сторон шестиугольника и меньшей диагонали шестиугольника, один угол 120 градусов, а углы при малой диагонали по 30 градусов Малая диагональ шестиугольника равна 10 см., а ее половина 5 смРассмотрим прямоугольный треугольник образованный стороной шестиугольника, половиной меньшей диагонали и высотою, опущенной с вершины шестиугольника на малую диагональ. Сторона лежащая против угла 30 градусов равна половине гипотенузы,Т. е. гипотенуза равна 10, с другой стороны гипотенуза – это сторона шестиугольника. Радиус описанной окружности вокруг шестиугольника равен стороне этого шестиугольника, то есть = 10 см.
Всякое пересечение шара плоскостью есть круг. Так как плоскость проходит через конец диаметра, то одна точка образовавшегося круга принадлежит ему и диаметру.
Граница круга – окружность, проведем хорду в ней так, чтобы одна точка принадлежала концу диаметра шара, а другую так, чтобы в итоге хорда пересекала центр окружности.
Разделим диаметр шара пополам и соединим точку, являющуюся его серединой, с точкой хорды окружности, но не принадлежащей диаметру.
Образуется треугольник, две стороны которого равны, так как являются радиусами шара, это в свою очередь следует из того, что оба соединяют его центр с одной из точек поверхности шара.
Угол между основанием и одной боковой стороной, нам известен, он равен углу между плоскостью и диаметром шара – 45*.
Соответственно и второй угол при основании будет равен 45*, а третий – 90*, согласно теореме о сумме углов треугольника.
Из соотношений сторон в прямоугольном треугольнике можно легко найти диагональ сечения:
a = b : cos 45*
a = b : sqrt(0,5)
b нам известен, это половина диаметра шара - его радиус.
a = m : sqrt(0,5) = sqrt(2)m
Длина окружности рассчитывается по формуле:
l = 2nR
l = (sqrt(2) * m : 2) * 2 * n
l = sqrt(2)mn
*n = Число Пи.