Используя рисунок данного прямоугольника ABCD, определи модуль векторов. Известно, что длина сторон прямоугольника AB= 10, BC= 24. ∣AB−→−∣∣∣ = ∣CD−→−∣∣∣ = ∣AD−→−∣∣∣ = ∣∣∣AO−→−∣∣∣ = ∣OB−→−∣∣∣ = ∣AC−→−∣∣∣ =
В трапеции меньшая диагональ перпендикулярна основаниям сумма острых углов равна 90º. Найдите площадь трапеции, если ее основания 2 и 18. --------- Диагональ ВD делит трапецию на два прямоугольных треугольника. Сумма острых углов АВСD равна 90º ⇒ ∠ВАD+∠ВСD=90º В прямоугольном ∆ АВD ∠ВАD+∠АВD=90º ⇒ ∠АВD= ∠ВСD ⇒ прямоугольные ∆ АВD и ∆ ВСD подобны по равному острому углу. Из подобия треугольников следует отношение: АD:ВD=ВD:ВС ВD²=АD*ВС=18*2=36 ВD=6 ВD- высота трапеции S=BD*(AD+BC):2 S=6*(18+2):2=60 (ед. площади)
1) При параллельной проекции сохраняется параллельность отрезков, следовательно, ответ 2 подходит - параллелограмм. 2) При параллельной проекции сохраняются соотношения. В ΔАВС - MN - отрезок, проведенный с середены АВ и перпендикулярный основе АС. Проведем высоту ВН, в равнобедренном Δ высота к основе есть и медиана, т. е. делит основу пополам. Если рассмотреть ΔВАН - MN || BH как перпендикуляры к одной стороне. Так как М середина АВ, и MN || BH - то по теореме Фалеса можно утверждать, что АN=NH (если на одной стороне угла параллельные прямые отсекают равные отрезки, то и на другой стороне угла будут тоже отсекать равные отрезки). С вышедоказанного следует, что чтоб построить проекцию перпендикуляра MN, достаточно в ΔА1В1С1 проекции треугольника, на проекции основания А1С1 отложить 4ую часть ее длины от вершины А1.
---------
Диагональ ВD делит трапецию на два прямоугольных треугольника.
Сумма острых углов АВСD равна 90º ⇒
∠ВАD+∠ВСD=90º
В прямоугольном ∆ АВD
∠ВАD+∠АВD=90º ⇒
∠АВD= ∠ВСD ⇒
прямоугольные ∆ АВD и ∆ ВСD подобны по равному острому углу.
Из подобия треугольников следует отношение:
АD:ВD=ВD:ВС
ВD²=АD*ВС=18*2=36
ВD=6
ВD- высота трапеции
S=BD*(AD+BC):2
S=6*(18+2):2=60 (ед. площади)
2) При параллельной проекции сохраняются соотношения.
В ΔАВС - MN - отрезок, проведенный с середены АВ и перпендикулярный основе АС. Проведем высоту ВН, в равнобедренном Δ высота к основе есть и медиана, т. е. делит основу пополам. Если рассмотреть ΔВАН - MN || BH как перпендикуляры к одной стороне. Так как М середина АВ, и MN || BH - то по теореме Фалеса можно утверждать, что АN=NH (если на одной стороне угла параллельные прямые отсекают равные отрезки, то и на другой стороне угла будут тоже отсекать равные отрезки).
С вышедоказанного следует, что чтоб построить проекцию перпендикуляра MN, достаточно в ΔА1В1С1 проекции треугольника, на проекции основания А1С1 отложить 4ую часть ее длины от вершины А1.