Найдем <B.Из теоремы о сумме углов тр-ка он равен 75 градусам. По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC. Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3 *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636. Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2. Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3. ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.
- L АВС ( между касательной и секущей) равен половине угловой величины дуги BС. Но вписанный L BDC тоже опирается на дугу BC, и равен половине угловой величины дуги BС. Оба угла равны половине угловой величины дуги BC, следовательно, эти углы равны между собой. L BDC=L ABC.
Принимая во внимание то, что у Δ АМС и ΔВМА угол при вершине М - общий, констатируем подобие этих треугольников по двум углам признак1).
Из подобия имеем: AC/BA=BА/AD, откуда получаем BА²=AC*AD(см. рис.)
По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC.
Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3 *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636.
Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2.
Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3.
ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.
- L АВС ( между касательной и секущей) равен половине угловой величины дуги BС. Но вписанный L BDC тоже опирается на дугу BC, и равен половине угловой величины дуги BС. Оба угла равны половине угловой величины дуги BC, следовательно, эти углы равны между собой. L BDC=L ABC.
Принимая во внимание то, что у Δ АМС и ΔВМА угол при вершине М - общий, констатируем подобие этих треугольников по двум углам признак1).
Из подобия имеем: AC/BA=BА/AD, откуда получаем BА²=AC*AD(см. рис.)
Объяснение: