Итоговая контрольная работа по геометрии 7 класс
1. В треугольнике АВС ∠А = 116°, ∠С = 32°.
а) Докажите, что треугольник АВС — равнобедренный, и укажите его боковые стороны.
б) Отрезок СК — биссектриса данного треугольника. Найдите углы, которые она образует со стороной АВ.
2. Отрезки АВ и CD пересекаются в точке О, которая является серединой каждого из них
а) Докажите, что △AOD = △ВОС.
б) Найдите ∠OBC, если ∠ODA = 30°, ∠BOC = 124°.
3. В равнобедренном треугольнике с периметром 94 см одна из сторон равна 26 см. Найдите длину основания треугольника.
Если меньшая диагональ равна d= Х, то большая равна D= (Х+4).
Тогда S=(1/2)*D*d=96 см². Отсюда имеем квадратное уравнение:
Х²+4Х-196, решая которое получаем:
Х1=-2-14=-16 (не удовлетворяет условию)
Х2=-2+14=12. Итак, Х=12см. Это меньшая диагональ.
Тогда большая диагональ равна 16см.
Диагонали ромба делятся точкой пересечения пополам и взаимно перпендикулярны. Следовательно, сторону ромба можно найти по Пифагору из прямоугольного треугольника АОВ:
АВ=√(36+64)=10см. В ромбе все стороны равны.
ответ: сторона ромба равна 10см.
2. Разделим угол СОВ пополам. Для этого циркулем из вершины О на сторонах угла отложим равные отрезки ОВ и ОЕ . Затем проводим окружности с центрами в точках В и Е равных радиусов, которые пересекутся в точке F. Прямая, соединяющая O и F делит угол COB пополам. Угол FOB = 45°.
3. Точно так же делим угол СOF пополам. Получаем угол QOF=45°:2=22°30'.
QOB=<QOF+<FOB=22°30'+45°=67°30', что и надо было построить.