Обозначим : АВСД---основание пирамиды АС и ВД --диагонали, точка О- точка пересечения диагоналей. S--вершина пирамиды, КS---апофема ( высота боковой грани) К∈АВ, АК=КВ, КО=1/2а, КО - параллельно АД и ВС. Угол SKO=60град по условию. Рассмотрим ΔSKO, SO--высота пирамиды, треугольник прямоугольный. Найдём Н : SO=КО·tg60 SO=a·√3/2 Для того , что бы найти ребро пирамиды , рассмотрим ΔASO ( угол О=90). АО- радиус описанной окружности . Для правильного четырехугольника R=а/√2 По теореме Пифагора найдём АS--ребро пирамиды AS²=SO²+AO² AS²=(a√3/2)²+(а/√2)²=3а²/4+а²/2=5а²/4 AS=√5a²/4=а√5/2 ответ: а√5/4
Высота трапеции равна диаметру вписанной окружности: ВН = СК = 7,5 · 2 = 15 см ΔАВН: ∠АНВ = 90°, по теореме Пифагора АН = √(АВ² - ВН²) = √(17² - 15²) = √(289 - 225) = √64 = 8 см ΔАВН = ΔDCK по катету и гипотенузе (АВ = CD по условию, ВН = СК как высоты трапеции), ⇒ DK = AH = 8 см
Если в четырехугольник вписана окружность, то суммы противоположных сторон равны: AD + BC = AB + CD = 17 + 17 = 34 см AD = AH + HK + KD = 8 + HK + 8 = HK + 16 Так как НК = ВС: AD + BC = 34 AD = BC + 16
2BC + 16 = 34 BC = (34 - 16)/2 = 18/2 = 9 см AD = 9 + 16 = 25 см
Рассмотрим ΔSKO, SO--высота пирамиды, треугольник прямоугольный. Найдём Н : SO=КО·tg60
SO=a·√3/2
Для того , что бы найти ребро пирамиды , рассмотрим ΔASO ( угол О=90). АО- радиус описанной окружности . Для правильного четырехугольника
R=а/√2
По теореме Пифагора найдём АS--ребро пирамиды
AS²=SO²+AO²
AS²=(a√3/2)²+(а/√2)²=3а²/4+а²/2=5а²/4
AS=√5a²/4=а√5/2
ответ: а√5/4
ВН = СК = 7,5 · 2 = 15 см
ΔАВН: ∠АНВ = 90°, по теореме Пифагора
АН = √(АВ² - ВН²) = √(17² - 15²) = √(289 - 225) = √64 = 8 см
ΔАВН = ΔDCK по катету и гипотенузе (АВ = CD по условию, ВН = СК как высоты трапеции), ⇒
DK = AH = 8 см
Если в четырехугольник вписана окружность, то суммы противоположных сторон равны:
AD + BC = AB + CD = 17 + 17 = 34 см
AD = AH + HK + KD = 8 + HK + 8 = HK + 16
Так как НК = ВС:
AD + BC = 34
AD = BC + 16
2BC + 16 = 34
BC = (34 - 16)/2 = 18/2 = 9 см
AD = 9 + 16 = 25 см