В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Gaka4112009
Gaka4112009
07.04.2022 06:09 •  Геометрия

Из центра о правильного треугольника авс проведен перпендикуляр оs к площены треугольника, м - середина вс. расстояние от точки о до плоскости (всs) равна длине а) высоты ом δовс; б) медианы ок δоsм; в) высоты ор δоsм; г) отрезка sо.

Показать ответ
Ответ:
соня1582
соня1582
20.06.2020 02:33
Итак, пусть будет вписан шестиугольник ABCDEF (см. приложение). Количество вершин многоугольника не влияет на решение))
Проведем радиусы OA и OB. Они будут равными как радиусы одной окружности. Проведем высоту OH, которая будет являться одновременно радиусом вписанной окружности и равна 3 по условию. Так как треугольник равнобедренный, то OH будет также являться медианой. Так как, AB - сторона многоугольника и основание треугольника AOB, равная 6√3, а OH - медиана, то AH = (6√3)÷2 = 3√3. Так как треугольник AOH - прямоугольник, а OA - гипотенуза, то воспользуемся т. Пифагора: OA = √((3√3)²+3²) = √36 = 6. Значит, радиус OA описанной окружности равен 6.
Найдите радиус окружности, описанной около правильного многоугольника, если радиус вписанной окружно
0,0(0 оценок)
Ответ:
YULIAPETROVA84
YULIAPETROVA84
20.06.2020 02:33
Итак, пусть будет вписан шестиугольник ABCDEF (см. приложение). Количество вершин многоугольника не влияет на решение))
Проведем радиусы OA и OB. Они будут равными как радиусы одной окружности. Проведем высоту OH, которая будет являться одновременно радиусом вписанной окружности и равна 3 по условию. Так как треугольник равнобедренный, то OH будет также являться медианой. Так как, AB - сторона многоугольника и основание треугольника AOB, равная 6√3, а OH - медиана, то AH = (6√3)÷2 = 3√3. Так как треугольник AOH - прямоугольник, а OA - гипотенуза, то воспользуемся т. Пифагора: OA = √((3√3)²+3²) = √36 = 6. Значит, радиус OA описанной окружности равен 6.
Найдите радиус окружности, описанной около правильного многоугольника, если радиус вписанной окружно
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота