Из центра О правильного треугольника KDP со стороной 4см проведен перпендикуляр ОМ к плоскости треугольника.Вычислить расстояние от точки М до одной из сторон треугольника,если ОМ=2см
5. Пользуемся ответами от 3 и 4 задания.Сумма периметров треугольников АВС и DEF равна 16 см (7 см+9 см). Я не знаю, там нужно писать единицы измерения или нет.
Сумма углов треугольника равна 180 градусов. Если углы треугольника относятся как 5 : 6 : 7, то это значит, что первый угол содержит 5 частей, второй - 6 таких же частей, а третий 7 таких же частей градусных мер угла.
Пусть одна часть угла равна х градусов, тогда первый угол треугольника равен 5х градусов, второй угол равен 6х градусов, а третий угол - 7х градусов. По условию задачи известно, что сумма углов треугольника равна (5х + 6х + 7х) градусов или 180°. Составим уравнение и решим его.
5х + 6х + 7х = 180;
18х = 180;
х = 180 : 18;
х = 10° - градусная мера одной части;
5х = 10° * 5 = 50° - первый угол;
6х = 10° * 6 = 60° - второй угол;
7х = 10° * 7 = 70° - третий угол.
Все углы треугольника острые, значит, этот треугольник будет остроугольным.
Написала на картинке.
1. Каждая сторона треугольника меньше суммы двух других сторон. Пользуясь этой теоремой, пишем неравенства для сторон шестиугольника.
2. Неравенство для второго вопроса -
PK+KL+LM+MN+NR+PR < PA+KA+DK+DL+LB+BM+ME+EN+NC+RC+PF+FR.
3. Неравенство для третьего вопроса -
2*(PK+KL+LM+MN+NR+PR) < PA+KA+DK+DL+LB+BM+ME+EN+NC+RC+PF+FR+(PK+KL+LM+MN+NR+PR).
4. На картинке.
5. Пользуемся ответами от 3 и 4 задания.Сумма периметров треугольников АВС и DEF равна 16 см (7 см+9 см). Я не знаю, там нужно писать единицы измерения или нет.
Вот такое неравенство в итоге получилось -
2*(PK+KL+LM+MN+NR+PR) < 16 см.
6. Логично, что поделить на 2.
Получаем, что -
2*(PK+KL+LM+MN+NR+PR) < 16 см
PK+KL+LM+MN+NR+PR < 8 см.
Это нам и нужно было доказать!
Сумма углов треугольника равна 180 градусов. Если углы треугольника относятся как 5 : 6 : 7, то это значит, что первый угол содержит 5 частей, второй - 6 таких же частей, а третий 7 таких же частей градусных мер угла.
Пусть одна часть угла равна х градусов, тогда первый угол треугольника равен 5х градусов, второй угол равен 6х градусов, а третий угол - 7х градусов. По условию задачи известно, что сумма углов треугольника равна (5х + 6х + 7х) градусов или 180°. Составим уравнение и решим его.
5х + 6х + 7х = 180;
18х = 180;
х = 180 : 18;
х = 10° - градусная мера одной части;
5х = 10° * 5 = 50° - первый угол;
6х = 10° * 6 = 60° - второй угол;
7х = 10° * 7 = 70° - третий угол.
Все углы треугольника острые, значит, этот треугольник будет остроугольным.
ответ. 50°, 60°, 70°
Объяснение: