1. Сумма углов правильного n-угольника равна 180*n-360=1800( эта формула следует из того, что правильный n-угольник состоит из n треугольников, сумма внутренних углов треугольника равна 180, но при этом надо вычесть все углы находящиеся в вершинах треугольников) , т. е. n=12, тогда внутренний угол равен 1800/12=150, а внешний 180-150=30 ( либо , (1800-2)*180 / 1800 равно 179,8 - это один угол из н-угольника, его внешний угол равен 180-179,8 равно 0,2градуса) 2. ответ Диагональ правильного четырехугольника (квадрата) = диаметру окружности. D = V(2*8^2) = 8V2 => R=4V3 R = aV3/3 = 4V3 a = 4*3 = 12 - сторона треугольника S = a^2*V3/4 = (12)^2 * V3/4 = 36V3 - площадь
Дано :
ΔАВС - равнобедренный (АВ = ВС).
∠В = 72°.
Отрезок АО - биссектриса ∠А.
Отрезок СК - биссектриса ∠С.
Точка М - точка пересечения АО и СК.
Найти :
∠АМС = ?
Углы при основании равнобедренного треугольника равны.Следовательно -
∠А = ∠С.
Сумма внутренних углов треугольника равна 180° (теорема о сумме внутренних углов треугольника).Следовательно -
∠А + ∠В + ∠С = 180°
∠А + ∠С = 180° - ∠В
∠А + ∠С = 180° - 72°
∠А + ∠С = 108°
∠А = ∠С = 108° : 2 = 54°.
Биссектриса угла треугольника - это отрезок, который является биссектрисой угла треугольника.Отсюда -
∠КАМ = ∠МАС = 54° : 2 = 27°
∠АСМ = ∠МСО = 54° : 2 = 27°.
Рассмотрим ΔАМС.
По теореме о сумме внутренних углов треугольника -
∠МАС + ∠АСМ + ∠АМС = 180°
∠АМС = 180° - ∠МАС - ∠АСМ
∠АМС = 180° - 27° - 27°
∠АМС = 126°.
126°.
2. ответ
Диагональ правильного четырехугольника (квадрата) = диаметру окружности.
D = V(2*8^2) = 8V2 => R=4V3
R = aV3/3 = 4V3
a = 4*3 = 12 - сторона треугольника
S = a^2*V3/4 = (12)^2 * V3/4 = 36V3 - площадь