1. расстояние от точки B до прямой A1F1 это длина перпендикуляра ВР к прямой A1F1, По теореме о трех перпендикулярах его проекция В1Р перпендикулярна к прямой A1F1. Из треугольника А1В1Р надем В1Р: угол В1А1Р равен 60°, т к внутренний угол А1 правильного шестиугольника равен 120°, А1В1 =2, тогда В1Р=В1А1*sin60°=2*√3/2=√3. Из прямоугольного треугольника ВВ1Р найдем гипотенузу ВР: ВР=√(ВВ1^2+B1P^2)=√(3+4)=√7. 2. ОН - расстояние от плоскости сечения до центра, т к площадь сечения цилиндра плоскостью, проходящей параллельно оси цилиндра, равна 72, а высота цилиндра 3, то АВ=72:3=24, АН=12, ОА=R=13, ОН=√(OA^2-AH^2)=√(169-144)=√25=5
2. ОН - расстояние от плоскости сечения до центра, т к площадь сечения цилиндра плоскостью, проходящей параллельно оси цилиндра, равна 72, а высота цилиндра 3, то АВ=72:3=24, АН=12, ОА=R=13, ОН=√(OA^2-AH^2)=√(169-144)=√25=5
ABCD - трапеция.
Проведем СК║АВ, тогда АВСК - параллелограмм (противоположные стороны параллельны), значит
АК = ВС = 14 м и СК = АВ = 8 м
KD = AD - AK = 19 - 14 = 5 м
Из треугольника KCD по теореме косинусов найдем углы К и D:
cos∠D = (CD² + KD² - KC²) / (2 · CD · KD)
cos∠D = (36 + 25 - 64) / (2 · 6 · 5) = - 3 / 60 = - 1/20
∠D = arccos(-1/20) = 180° - arccos(1/20) ≈ 180° - 87° ≈ 93°
cos∠CKD = (CK² + KD² - CD²) / (2 · CK · KD)
cos∠CKD = (64 + 25 - 35) / (2 · 8 · 5) = 54/80 = 27/40
∠CKD = arccos(27/40) ≈ 48°
∠BAD = ∠CKD ≈ 48° как соответственные при пересечении параллельных прямых АВ и СК секущей AD.
Сумма углов трапеции, прилежащих к боковой стороне, равна 180°, поэтому
∠АВС = 180° - ∠BAD ≈ 180° - 48° ≈ 132°
∠BCD = 180° - ∠D ≈ 180° - 93° ≈ 87°