Параллельная гипотенузе прямая отсекает от исходного треугольника подобный ему. Пусть площадь исходного треугольника будет S₁, а меньшего S₂ Так как площади частей, на которую треугольник разделился, равны между собой, то площадь меньшего треугольника равна половине площади исходного, Площади подобных фигур относятся как квадрат коэффициента их подобия. Пусть коэффициент подобия сторон=k S₁:S₂=2 (по условию) Отношение площадей треугольников= k² k² =2 Периметры подобных фигур относятся как их линейные измерения. Коэффициент подобия сторон и периметров треугольников k=√2 Р₁:Р₂=√2 Гипотенуза по т. Пифагора=√(3²+4²) =5 Р₁=3+4+5=12 12:Р₂=√2Р₂=12:√2 Умножив числитель и знаменатель дроби на √2, получим =12√2):√2*√2=6√2 ответ: Периметр меньшего треугольника 6√2 ----------------- Определение: Симметрия относительно точки или центральная симметрия - это такое свойство геометрической фигуры, когда любой точке, расположенной по одну сторону центра симметрии, соответствует другая точка, расположенная по другую сторону центра.
Построить треугольник, симметричный относительно точки, расположенной внутри него, значит построить треугольник, все вершины которого находятся на таком же расстоянии от данной точки, как и вершины исходного, но по другую сторону от неё. Для этого через каждую вершину и точку О проводим прямые, на которых откладываем расстояние, равное расстоянию от вершины до точки, и затем соединяем концы образовавшихся отрезков. Построение см. во вложении.
Пусть площадь исходного треугольника будет S₁, а меньшего S₂
Так как площади частей, на которую треугольник разделился, равны между собой, то площадь меньшего треугольника равна половине площади исходного,
Площади подобных фигур относятся как квадрат коэффициента их подобия.
Пусть коэффициент подобия сторон=k
S₁:S₂=2 (по условию)
Отношение площадей треугольников= k²
k² =2
Периметры подобных фигур относятся как их линейные измерения.
Коэффициент подобия сторон и периметров треугольников
k=√2
Р₁:Р₂=√2
Гипотенуза по т. Пифагора=√(3²+4²) =5
Р₁=3+4+5=12
12:Р₂=√2Р₂=12:√2
Умножив числитель и знаменатель дроби на √2, получим =12√2):√2*√2=6√2
ответ:
Периметр меньшего треугольника 6√2
-----------------
Определение: Симметрия относительно точки или центральная симметрия - это такое свойство геометрической фигуры, когда любой точке, расположенной по одну сторону центра симметрии, соответствует другая точка, расположенная по другую сторону центра.
Построить треугольник, симметричный относительно точки, расположенной внутри него, значит построить треугольник, все вершины которого находятся на таком же расстоянии от данной точки, как и вершины исходного, но по другую сторону от неё.
Для этого через каждую вершину и точку О проводим прямые, на которых откладываем расстояние, равное расстоянию от вершины до точки, и затем соединяем концы образовавшихся отрезков.
Построение см. во вложении.
∠А = 36,34°; ∠В = 117,28°; ∠С = 26,38°.
Объяснение:
1) По теореме косинусов:
a^2 = b^2 + c^2 + 2bc*cos (α),
откуда
cos (α) = (b^2 + c^2 - a^2) / 2bc .
2) Обозначим углы и стороны:
∠ А = α
∠ В = β
∠ С = Δ
а = ВС (лежит против угла α)
b = АС (лежит против угла β)
с = АВ (лежит против угла Δ).
3) cos (α) = (b^2 + c^2 - a^2) / 2bc = (6^2 + 3^2 - 4^2) / (2*6*3) =
(36+9-16)/36 = 29/36 = 0,8055 55
По таблице косинусов находим, какой это угол:
α = arccos 0,8055 55 = 36,34°.
∠А = 36,34°.
4) Находим второй острый угол (он лежит против стороны 3 см и должен получиться меньше угла α):
cos (Δ) = (b^2 + а^2 - с^2) / 2ab = (6^2 + 4^2 - 3^2) / (2*6*4) =
(36+16-9)/48 = 43/48 = 0,8958 33
По таблице косинусов находим, какой это угол:
α = arccos 0,8958 33 = 26,38°.
∠С = 26,38°.
5) Находим третий угол:
180 - 36,34 - 26,38 = 117,28°.
∠В = 117,28°.
ответ: ∠А = 36,34°; ∠В = 117,28°; ∠С = 26,38°.