Из центра окружности, описанной около остроугольного треугольника, проведены радиусы к вершинам треугольника. углы между радиусами равны 90°,130°,140°. найди углы треугольника
а)Так как Площадь сечения - энто треугольник. Причем равнобедренный, причем с вершиной равный 60 градусов. Значит равносторонний треугольник. Так как основание - диаметр конуса и равна соответственно 12 как и все остальные стороны. Вроде была там формула какая-то про площадь равностороннего треугольника, но я ее не вспомнил, поэтому ну ее =) Опускаем из вершины высоту. Длинну энтой высоты обозначим за Х. Второй катет есть равен 6 И гипотенуза равна 12 Тогда Х = SQRT (108) т.е. корень квадратный из 108. Дальше множим эту высоту на диаметр и делим на два (так как треугольник). В итоге получим что площадь равна 18 SQRT (3) Под б) Честно говоря забыл как вычислять площадь кругового сектора поэтому поступим по хитрому =) Зная что площадь ВСЕГО конуса вычисляется по формуле S1 = пR(R + L) Где R - радиус основания, а L образующая вычислим плозадь всего и отнимим от нее площадь основания (жесть так делать конечно =) ), которое вычисляется соответственно по формуле S2 = п R^2 S1 = п 6 (6 + 12) = 108 п S2 = п 6^2 = п 36 S = 72 п
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Вроде была там формула какая-то про площадь равностороннего треугольника, но я ее не вспомнил, поэтому ну ее =)
Опускаем из вершины высоту. Длинну энтой высоты обозначим за Х. Второй катет есть равен 6 И гипотенуза равна 12 Тогда Х = SQRT (108) т.е. корень квадратный из 108.
Дальше множим эту высоту на диаметр и делим на два (так как треугольник). В итоге получим что площадь равна 18 SQRT (3) Под б)
Честно говоря забыл как вычислять площадь кругового сектора поэтому поступим по хитрому =)
Зная что площадь ВСЕГО конуса вычисляется по формуле S1 = пR(R + L) Где R - радиус основания, а L образующая вычислим плозадь всего и отнимим от нее площадь основания (жесть так делать конечно =) ), которое вычисляется соответственно по формуле S2 = п R^2
S1 = п 6 (6 + 12) = 108 п
S2 = п 6^2 = п 36
S = 72 п
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.