Попробую объяснить на словах, но ты включи свое воображение. по условию задачи точки лежат на окружности. соединим их попарно линиями проходящими через центр окружности О. получим два отрезка mn и ef, которые делятся центром окружности пополам. рассмотрим два треугольника mon и eof. сторона no равна стороне eo и сторона mo равна fo. получаем, что в наших рассматриваемых треугольника есть по две равные стороны. углы о в этих треугольниках тоже будут равны, т.к. являются вертикальными. на основании всего этого изложенного вытекает, что треугольники равны между собой, следовательно и стороны mn и ef РАВНЫ.
по условию задачи точки лежат на окружности. соединим их попарно линиями проходящими через центр окружности О. получим два отрезка mn и ef, которые делятся центром окружности пополам. рассмотрим два треугольника mon и eof. сторона no равна стороне eo и сторона mo равна fo. получаем, что в наших рассматриваемых треугольника есть по две равные стороны. углы о в этих треугольниках тоже будут равны, т.к. являются вертикальными. на основании всего этого изложенного вытекает, что треугольники равны между собой, следовательно и стороны mn и ef РАВНЫ.
Дано: (рисунок)
Найти: AB
Решение: Опустим на сторону BC вершину AD, проходящую через точку A.
Так как вершина является перпендекуляром, то углы ADC и ADB равны 90⁰.
Так как сумма углов треугольника равна 180⁰, найдем углы CAD и DAB:
угол CAD=180⁰-30⁰-90⁰=60⁰
угол DAB=180⁰-90⁰-45⁰=45⁰
Из последнего выражения следует, что треугольник ADB - равнобедренный.
Найдем сторону AD треугольника CAD, пользуясь выражением «в прямоугольном треугольнике катед против 30⁰ равен половине гипотенузы»:
AD=6 см
Так как треугольник ADB равнобеднеррый, то AD=DB
Теперь, найдем сторону AB по теореме Пифагора: