Изи
Объяснение:
Задача1:
1)угол MOK(центральный)=дуге MK=78°
2)угол ONK(вписаный)= половине дуги MK=78°:2=39°
3)угол NOK( | радиусу):(по теореме о касательных)
=>(следовательно)=90°
угол x: угол ONK+угол NOK+угол x=180°
( переделаем под угол формулу):
Угол х=180°-(39°+90°)=180°-129°=51°
Задача2:
НЕ ЗНАЮ(((
ПОЯСНЕНИЕ ОБЯЗАТЕЛЬНО ПРОЧИТАЙ,ЧТОБЫ В ДАЛЬНЕЙШЕМ ПОНИМАТЬ,ЧТО Я ПИШУ,ТАК КАК ВРЕМЯ ДЕНЬГИ, ТО:
ВПИСАННЫЙ УГОЛ-В
ЦЕНТРАЛЬНЫЙ УГОЛ0-Ц
РАДИУС-Р
Диаметр-Д
Дуга-д
Угол-У
Половина- п
Известны дуги сумма дуг =360°
=> д KM+д ML+д KL=360°
=> д KL=360°-(д KM+д ML)=360°-(77°+143°)=360°-220°=140°
У M(ВУ:=П д)=140°÷2=70°
Задача10:
Не знаю чего-то не могу увидеть вижу только:
MN-Д
У MKN=90 опирается на Д и по теореме касательных тоже
Высоты трапеции BF и CE равны диаметру вписанной окружности.
Прямоугольные треугольники ABF и DCE равны.
По теореме Пифагора из треугольника ECD находим ED:
ED^2=CD^2−CE^2
ED^2=(13)^2−(5)^2
ED=√(13)^2−(5)^2
ED= 12 см
Так как в трапецию вписана окружность, то суммы противоположных сторон трапеции равны.
BC+AD=AB+CD
BC=FE, пусть BC=x, тогда
x+12+x+12=13+13
x=1
BC=1 см, AD=12+1+12=25 см.
Площадь трапеции S=(BC+AD)/2⋅EC=(1+25)/2⋅5=65 см^2.
Изи
Объяснение:
Задача1:
1)угол MOK(центральный)=дуге MK=78°
2)угол ONK(вписаный)= половине дуги MK=78°:2=39°
3)угол NOK( | радиусу):(по теореме о касательных)
=>(следовательно)=90°
угол x: угол ONK+угол NOK+угол x=180°
( переделаем под угол формулу):
Угол х=180°-(39°+90°)=180°-129°=51°
Задача2:
НЕ ЗНАЮ(((
ПОЯСНЕНИЕ ОБЯЗАТЕЛЬНО ПРОЧИТАЙ,ЧТОБЫ В ДАЛЬНЕЙШЕМ ПОНИМАТЬ,ЧТО Я ПИШУ,ТАК КАК ВРЕМЯ ДЕНЬГИ, ТО:
ВПИСАННЫЙ УГОЛ-В
ЦЕНТРАЛЬНЫЙ УГОЛ0-Ц
РАДИУС-Р
Диаметр-Д
Дуга-д
Угол-У
Половина- п
Известны дуги сумма дуг =360°
=> д KM+д ML+д KL=360°
=> д KL=360°-(д KM+д ML)=360°-(77°+143°)=360°-220°=140°
У M(ВУ:=П д)=140°÷2=70°
Задача10:
Не знаю чего-то не могу увидеть вижу только:
MN-Д
У MKN=90 опирается на Д и по теореме касательных тоже
Объяснение:
Высоты трапеции BF и CE равны диаметру вписанной окружности.
Прямоугольные треугольники ABF и DCE равны.
По теореме Пифагора из треугольника ECD находим ED:
ED^2=CD^2−CE^2
ED^2=(13)^2−(5)^2
ED=√(13)^2−(5)^2
ED= 12 см
Так как в трапецию вписана окружность, то суммы противоположных сторон трапеции равны.
BC+AD=AB+CD
BC=FE, пусть BC=x, тогда
x+12+x+12=13+13
x=1
BC=1 см, AD=12+1+12=25 см.
Площадь трапеции S=(BC+AD)/2⋅EC=(1+25)/2⋅5=65 см^2.