Из точки А к плоскости α проведена наклонная АВ под углом 30°. Найти расстояние от точки А к плоскости α, если проекция наклонной АВ к этой плоскости равна 4см.
BD - диагональ основания, равная по Пифагору √(8²+6²)=10см. Плоскость сечения - треугольник BDC1, площадь которого равна S=(1/2)*BD*С1Н, где С1Н - высота сечения - перпендикуляр к прямой BD. Угол между плоскостями сечения и основания - это угол С1НС по определению: "Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения". С1Н - перпендикулярна линии пересечения BD по построению, СН - перпендикулярен BD по теореме о трех перпендикулярах. Итак, <C1HC=60° (дано), <CC1H = 30° (по сумме острых углов прямоугольного треугольника) Отрезок СН - это высота треугольника ВСD из его прямого угла и по свойству этой высоты равен СН=ВС*СD/BD=6*8/10=4,8см. Тогда С1Н = 2*СН = 9,6см (как гипотенуза и катет против угла 30°). Площадь сечения равна S=(1/2)*BD*C1H = 5*9,6 = 48см².
1. По теореме Пифагора найдем неизвестный катет АВ в прямоугольном треугольнике АВС: АВ=√AC² - BC² =√(6√2)²- 6² = √36*2-36=√36=6 Получаем, что треугольник АВС - равнобедренный, значит углы при его основании АС равны: <BAC=<BCA=(180-90):2=45° 2. <BCA=<CAD как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей АС,<CAD=45° 3. Треугольники АВС и AED подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого. В нашем случае:<B=<AED=90°, <BCA=CAD=45° 4. Зная тангенс угла ACD запишем: tg ACD = ED/EC, отсюда EC=ED/tg ACD= ED/2 5. Для подобных треугольников можно записать: AB:AE=BC:ED. AE=AC-EC=6√2-ED/2, AE=. Запишем отношение для подобных треугольников как:
Плоскость сечения - треугольник BDC1, площадь которого равна
S=(1/2)*BD*С1Н, где С1Н - высота сечения - перпендикуляр к прямой BD.
Угол между плоскостями сечения и основания - это угол С1НС по определению: "Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения". С1Н - перпендикулярна линии пересечения BD по построению, СН - перпендикулярен BD по теореме о трех перпендикулярах.
Итак, <C1HC=60° (дано), <CC1H = 30° (по сумме острых углов прямоугольного треугольника)
Отрезок СН - это высота треугольника ВСD из его прямого угла и по свойству этой высоты равен СН=ВС*СD/BD=6*8/10=4,8см.
Тогда С1Н = 2*СН = 9,6см (как гипотенуза и катет против угла 30°).
Площадь сечения равна S=(1/2)*BD*C1H = 5*9,6 = 48см².
АВ=√AC² - BC² =√(6√2)²- 6² = √36*2-36=√36=6
Получаем, что треугольник АВС - равнобедренный, значит углы при его основании АС равны:
<BAC=<BCA=(180-90):2=45°
2. <BCA=<CAD как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей АС,<CAD=45°
3. Треугольники АВС и AED подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого. В нашем случае:<B=<AED=90°, <BCA=CAD=45°
4. Зная тангенс угла ACD запишем:
tg ACD = ED/EC, отсюда EC=ED/tg ACD= ED/2
5. Для подобных треугольников можно записать:
AB:AE=BC:ED.
AE=AC-EC=6√2-ED/2, AE=. Запишем отношение для подобных треугольников как:
ED=4√2
6. ЕС=ED/2=4√2/2=2√2