Из точки А к плоскости α проведены два отрезка АС и АВ . Точка D принадлежит АВ, точка Е принадлежит АС. DЕ параллельна α и равна 5 см. Найти длину отрезка ВС, если AD/BD=1/3
А) BADC - пирамида 1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||) ч.т.д б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC А отношение площадей подобных ▲ равно квадрату коэффициенту подобия. S1:S2=k^2 S2=S1:k^2 S2=48:2^2=12см^2 ответ:12 см^2
1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC
Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||)
ч.т.д
б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC
А отношение площадей подобных ▲ равно квадрату коэффициенту подобия.
S1:S2=k^2
S2=S1:k^2
S2=48:2^2=12см^2
ответ:12 см^2
Объяснение:
Дано:
Угол BAD= угол ADH=90°
BC=16см
АВ=АD
Рассмотрим прямоугольный ∆АВD.
Так как по условию меньшее основание трапеции равно меньшей боковой стороне, тоесть AD=AB, то ∆ADB равнобедренный с основанием BD, следовательно:
угол ADB= углу АВD.
Найдем угол ADB:
В прямоугольном треугольнике сумма острых углов равна 90°, тогда угол ADB=90°:2=45°
Рассмотрим ∆BDC.
Угол DBC=90° (так как по условию диагональ проведённая из тупого угла перпендикулярна большей боковой стороне), следовательно ∆BDC прямоугольный
Угол BDC=угол ADH– угол ADB=90°–45°=45°
Сумма острых углов в прямоугольной треугольнике равна 90°, следовательно угол BCD=90–угол BDC=90°–45°=45°
Получим: угол ВСD = угол BDC, тогда ∆BDC равнобедренный с основанием DC, следовательно BC=BD.
Так как ВС по условию 16 см, то и ВD=16 см.
Проведём высоту BH из угла АВС к стороне DC.
Так как по условию АВ=AD, а угол DAB=90° (прямой угол трапеции), то ABHD — квадрат.
Следовательно: AD=BH=DH
Найдем АD.
По теореме Пифагора BD²=AD²+AB²
16²=2AD²
256=2AD²
128=AD
AD=√128
AD=8√2
Sтрапеции=Sкв+Sтреугольника BHC
Sкв=а²
Где а сторона квадрата
Sкв=(8√2)²=128 см²
Треугольник BHC прямоугольный с прямым углом BHC ( так как BH высота)
Так как угол BCH=45°, то угол HBC=90°–угол BCH=90°–45°=45°
Тогда прямоугольный треугольник BHC равнобедренный.
Площадь прямоугольного равнобедренного треугольника равна половине квадрата стороны, тоесть:
S=0,5*a²
Подставим значения:
S=0,5*(8√2)²=64 см²
Найдем общую площадь:
S=128+64=192 см²
Ртрапеции=AB+AD+DH+HC+BC=8√2+8√2+8√2+8√2+16=4*(8√2)+16=32√2+16 (см)
ответ: S=192 см²
Р=32√2+16 см