Из точки А к плоскости α проведены две наклонные АВ и АС, которые образуют с проекциями углы 30 ° и 60 ° соответственно. Найдите расстояние между точками С и В, если угол между проекциями наклонных на эту плоскость равен 120 °, а проекция наклонной АС = √3 см.
ответ:
объяснение:
1) 2*9=18- это две стороны по 9, 26-18=8/2=4-это другая сторона, s=9*4=36
2)s=a*a=169, a=13, p=13*4=52
3) s=a*b=96, 3*b=96, b=96/3=32, p=2(a+b)=2(3+32)=70
4)4a=164, a=164/4=41
6)a=x, b=6x, 2(x+6x)=70, 7x=35, x=5, 6x=6*5=30, a=5, b=30, s(пр)=5*30=150, s(кв)=150, (у равновеликих фигур площади равны),
s(кв)=a^2, a^2=150, a=v150=v(25*6)=5v6, p(кв)=4*5v6=20v6
7)s=a^2*v3/4=36*v3/4=9v3
3.
a=x
b=4x
P(прям)=60см
P(равновелик. кв)-?
Р(прям)=2(a+b)
60=2(x+4x)
60=2*5x
10x=60
x=6 ⇒ a=6 см, b=24см
S(прям)=a*b = 6*24=144 см²
S(кв)=a² ⇒ a=√S
a=√144=12 см
P(кв)=4*a = 4*12=48 см
4.
a=10 см (мен. основание)
b=22 см (бол. основание)
с=d=10 см (бок. стороны)
S(трап)-?
S=1/2*(a+b)*h
высоты делать трап. на прямоугольник, и два равных прямоугольных треугольника (с гипотенузой 10 см, и меньшим катетом (22-10)/2=6 см)
по т. Пифагора: h=√10²-6²=√64=8 см
S=1/2*(10+22)*8=1/2*32*8=128 см²
5.
с=8 см
a=b=5 см
S(тр) -?
Р(тр) - ?
P=a+b+c=5+5+8=18 см
S=a*h
Медиана равнобед. тр. является и высотой и делит его на два равных прямоугольных тр-ка (гипотенуза 5 см, мен. катет 4 см)
По т. Пифагора h=√5²-4²=√9=3 см
S=8*3=24 см²
6.
см. предыдущую задачу S=24 см²
7.
d1=24 см
d2=10 см
Р(ромб)-?
S (ромб)-?
S=(d1*d2)/2
S=(24*10)/2=120см²
P=4√(d1/2)²+(d2/2)²
P=4√(24/2)²+(10/2)²=4√12²+5²=4√169=4*13=52 см
8.
a=12 см
с=20 см
S(прям. тр)-?
P(прям. тр)-?
По т. Пифагора: b=√20²-12²=√256=16 см
P=a+b+с
P=12+16+20=48 см
S=1/2ab
S=1/2*16*12=1/2*192=96 см²
9.
a=6 см
α = 30⁰
S(ромб)-?
S=a*2Sinα
S=6*2Sin30=6 см²