Из точки А к плоскости α проведены перпендикуляр и наклонная,угол между которыми равен 30°.Найдите длину наклонной,если ее проекция на данную плоскость равна 11 см.
На поверхности шара выбраны точки А и В так, что АВ - 40 см, а расстояние от центра до прямой АВ равно 15см. Найдите площадь сечения шара , проведенного через точки АВ на растоянии 7 см от центра шара. *** Расстояние от центра О шара до прямой, проведенной в нем, это перпендикуляр из центра шара к этой прямой. Через прямую и точку, не лежащую на ней, можно провести плоскость. (рис.1 приложения) Плоскость, проведенная через центр круга и АВ отсекает от шара окружность, в которой АВ - хорда, расстояние из центра О до АВ - перпендикуляр ОН, который, по свойству радиуса, делит АВ пополам. Треугольник АНО - прямоугольный с катетами АН=(40:2) см и НО=15см, и гипотенузой АО=R. АО=√(400+225)=√625=25 см Радиус шара равен 25 см. Центр сечения, отстоящено от центра шара на расстоянии 7 см, это точка М. Через М и АВ можно провести плоскость, которая является окружностью с радиусом МС. (рис.2 приложения) ОМС - прямоугольный треугольник с катетами МО и МС и гипотенузой ОС=R Треугольник ОМС из Пифагоровых троек с отношением сторон 7:24:25 ( отношение катета и гипотенузы 7:25, значит, второй катет равен 24). Можно проверить по т. Пифагора МС=24 см Площадь сечения с радиусом 24 см вычислим по формуле площади круга: Ѕ=πr² Ѕ=π*24²=576 π см²
5.1. ∠АСВ = 30° , ∠AOD = 120°
5.2. ∠DBC = 42° , ∠AOD = 96°
5.3. ∠BOC = 16° , ∠CAD = 82°
5.4. ∠AOD = 58° , ∠OBC = 61°
5.5. ∠ABD = 2° , ∠ACD = 2°
5.6. ∠COD = 138° , ∠CAD = 69°
5.1. ∠АСВ = 30° (вписанный угол) опирается на дугу АВ. Центральный ∠АОВ опирается на эту же дугу, значит, ∠АОВ = 2 · ∠АСВ = 60°; ∠AOD = 180° - ∠ АОВ = 180° - 60° = 120°.
5.2. ∠DBC = 42° (вписанный угол) опирается на дугу CD. Центральный ∠COD опирается на ту же дугу, значит, ∠СOD = 2 · ∠DBC = 84°; ∠AOD = 180° - ∠СOD = 180° - 84° = 96°.
5.3. ∠BOC = 16°; ∠COD = 180° - ∠BOC = 180° - 16° = 164°; ∠COD - центральный угол, опирающийся на дугу CD. ∠CAD - вписанный угол, опирающийся на ту же дугу, значит, ∠CAD = = 0,5 ∠COD = 0,5 · 164° = 82°.
5.4. ∠AOD = 58°; ∠COD = 180° - ∠AOD = 180° - 58° = 122°; ∠COD - центральный угол, опирающийся на дугу CD; ∠OBC = ∠DBC, а ∠DBC - вписанный угол, опирающийся на ту же дугу CD, значит, ∠OBC = ∠DBC = 0,5 · ∠COD - 0,5 · 122° = 61°.
5.5. ∠ABD = 2° - вписанный угол, опирающийся на дугу АD, ∠ACD - вписанный угол, опирающийся на ту же дугу, значит, ∠ACD = ∠ABD = 2°.
5.6. ∠COD = 138° - центральный угол, опирающийся на дугу CD; ∠CAD - вписанный угол, опирающийся на ту же дугу, значит, ∠CAD = 0,5 · ∠COD = 0,5 · 138° = 69°.
***
Расстояние от центра О шара до прямой, проведенной в нем, это перпендикуляр из центра шара к этой прямой.
Через прямую и точку, не лежащую на ней, можно провести плоскость. (рис.1 приложения)
Плоскость, проведенная через центр круга и АВ отсекает от шара окружность, в которой АВ - хорда, расстояние из центра О до АВ - перпендикуляр ОН, который, по свойству радиуса, делит АВ пополам.
Треугольник АНО - прямоугольный с катетами АН=(40:2) см и НО=15см, и гипотенузой АО=R.
АО=√(400+225)=√625=25 см
Радиус шара равен 25 см.
Центр сечения, отстоящено от центра шара на расстоянии 7 см, это точка М. Через М и АВ можно провести плоскость, которая является окружностью с радиусом МС. (рис.2 приложения)
ОМС - прямоугольный треугольник с катетами МО и МС и гипотенузой ОС=R
Треугольник ОМС из Пифагоровых троек с отношением сторон 7:24:25 ( отношение катета и гипотенузы 7:25, значит, второй катет равен 24). Можно проверить по т. Пифагора МС=24 см
Площадь сечения с радиусом 24 см вычислим по формуле площади круга:
Ѕ=πr²
Ѕ=π*24²=576 π см²