В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
alisakim2
alisakim2
24.11.2020 03:14 •  Геометрия

Из точки а, находящейся от плоскости на расстоянии 4 см, проведены к этой плоскости наклонные ab и ac под углом 30 градусов. их проекции образуют угол 90 градусов. найдите расстояние между основаниями наклонных.

Показать ответ
Ответ:
artyche
artyche
02.09.2021 16:51

242

Объяснение:

Площадь треугольника CDE равна половине произведения стороны CD на высоту, опущенную на неё из вершины E (обозначим её h_1). Тогда справедливо следующее равенство:

S_{CDE}=50\\\frac{CD*h_1}{2}=50\\CD*h_1=100\\h_1=\frac{100}{CD}

Аналогично в треугольнике ABE:

S_{ABE}=72\\\frac{AB*h_2}{72}=72\\AB*h_2=144\\h_2=\frac{144}{AB}

Поскольку перескающиеся диагонали в трапеции отсекают подобные треугольники (ABE и CDE), найдём коэффициент подобия:

k^2=\frac{S_{ABE}}{S_{CDE}}=\frac{72}{50}=1,44\\k=\sqrt{1,44}=1,2

Поскольку в подобных треугольниках соответствующие элементы пропорциональны, то справделивы следующие соотношения:

h_2=k*h_1\\\\\frac{144}{AB}=1,2*\frac{100}{CD}\\\\\frac{120}{AB}=\frac{100}{CD}\\\\AB=1,2*CD

Площадь трапеции ABCD равна произведению полусуммы её оснований (AB и CD) на высоту, которая равна сумме h_1 и h_2, то есть

S_{ABCD}=\frac{AB+CD}{2}*(h_1+h_2)=\frac{1,2CD+CD}{2}*(\frac{100}{CD}+\frac{144}{1,2CD})=\frac{2,2CD}{2}*\frac{120+144}{1,2CD}=1,1CD*\frac{220}{CD}=1,1*220=242

0,0(0 оценок)
Ответ:
Ахамад
Ахамад
25.11.2022 23:29

(26;4)

Объяснение:

Так как наши графики являются прямыми, функции выглядят так: y=kx+b

Найдем значения k и b, подставив значения точек A и B в уравнение y=kx+b и решив следующую систему:

\left \{ {{-5=11k+b} \atop {-6=4k+b}} \right.

\left \{ {{k=\frac{b+5}{11} } \atop {b=-6-4k}} \right.\\\\k=\frac{-6-4k+5}{11} | * 11\\11k = -6-4k+5\\15k=-1\\k=-\frac{1}{15}

Найдем b, подставив в b=-6-4k:

b=-6+\frac{4}{15} =-\frac{90}{15}+\frac{4}{15} =\frac{86}{15}

Первое уравнение имеет такой вид: y=-\frac{1}{15}x+\frac{86}{15}

- - - - - -

Найдем второе уравнение по аналогии (мне лень расписывать системами, так что я буду писать просто через новую строчку и в конце запишу итоговое решение системы)

\left \{ {{-4=-22k+b} \atop {-5=-28k+b}} \right.

- - - - -

22k=4+b\\k=\frac{4+b}{22}\\

b=-5+28k \\k=\frac{4-5+28k}{22} \\k=\frac{28k-1}{22} | * 22\\22k=28k-1\\-6k=-1\\k=\frac{1}{6}

- - - - -

b=-5+\frac{28}{6} = -\frac{30}{6} + \frac{28}{6} =-\frac{2}{6}

\left \{ {{k=\frac{1}{6} } \atop {b=-\frac{2}{6} }} \right.

Второе уравнение имеет следующий вид: y=\frac{1}{6}x-\frac{2}{6}

Чтобы найти точку пересечения, нужно приравнять уравнения графиков.

-\frac{1}{15} x + \frac{86}{15} = \frac{1}{6} x-\frac{2}{6} | * 30\\-2x+172=5x-10\\-7x=-182\\x=26\\

Чтобы найти y, нужно подставить в любое уравнение значение x.

y=\frac{26}{6} -\frac{2}{6} =\frac{24}{6} =4

ответ: (26;4)

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота