Из точки a, не лежащей в плоскости альфа, проведены две наклонные ab и ac к плоскости альфа, образующие с ней углы 30 градусов и 60 градусов соответственно. известно, что ab=20 см, а угол между проекциями равен 90 градусов. найдите расстояние между основаниями наклонных.
Теоремы (свойства параллелограмма):
В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle
ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO
= OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.
В образовавшемся треугольнике углы - 60°, 30°, 90°. Против угла 30° лежит катет в два раза меньше гипотенузы. Принимаем за х высоту треугольника и решаем по тю Пифагора:
4х²=х²+(3√3)²
3х²=27
х=3;
Гипотенуза - сторона правильного шестиугольника равна 3*2=6.
Сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.
R=6.
L=2πR=12π.
2. Неизвестный угол обозначен на чертеже красным цветом.
Находим FH из прямоугольного треугольника BFH.
FH=√(5²-3²)=4.
В треугольнике ВНО ВН=ОН (углы при ОВ 45° и угол Н 90°) и равны 6/2=3.
Тогда, из треугольника FHO FH*cosα=OH, cosα=OH/FH, α=arccosOH/FH=arccos0.6.