Из точки A, взятой вне окружности, проведены к ней касательная AB(B-точка касания) и секущая AD(CиD-точки пересечени с окружностью, C пренадлежит AD). Найдите угол ABD, если дугаCB=46градусов, дуга DB=82градуса.
2. треугольник равнобедренный. значит можно этот треугольник рассмотреть как 2 прямоугольных. треугольник равнобедренный( гипотенуза 5, один из катетов равен 3) тогда по т. Пифагора высота равна 4.
остальные высоты можно найти через площадь. площадь равна 1/2*4*6=12
1/2*h1*5=12, h1 = 4,8. вторая высота такая же т.к. сторона, к которой проведена высота, такая же.
4.площадь прямоугольного треугольника вычисляется по формуле S = (a*b)/2. a, b - соответственно катеты. a/b=7/12 по условию задачи. выражаем b через a: b=(a*12)/7. Подставляем в формулу для площади: S=(a*a*12)/7 168=(a*a*12)/7 a*a=168*7/6=196 a=14. b=14*12/7=24. ответ: 14 и 24
5. Пусть
a-верхнее основание
b-нижнее
h-высота
135-90= 45 градусов
треуг CDH -равнобедренный тк угол CHD-прямой
то BC=HD=6
то AD=AH+HD=6+6=12
S=(a+b)/2*h
S=(6+12)/2*6=54
ответ : 54
7.
сумма противоположных сторон описанного четырехугольника равны
Высоты тупоугольного треугольника находятся за пределами треугольника АВС, опускаясь на продолжение сторон. Высота ВВ₁ пересекает продолжение стороны СА – СВ₁, а высота СС₁ опускается на продолжение стороны ВА – ВС1 и точка их пересечения (ортоцентр) – это точка Н. Рассмотрим ∆АВВ₁ и ∆АСС₁. Они прямоугольные так как ∠АВ₁В=∠АС₁С=90°. ∠ВАВ₁ смежный с ∠ВАС, а сумма смежных углов составляет 180°, тогда ∠ВАВ₁=180– ∠А=180–110=70°. ∠ВАВ₁=∠САС₁=70°, как вертикальные. Сумма острых углов прямоугольного треугольника равна 90°, поэтому ∠АВВ₁=∠АСС₁=90–70=20°. Значит ∆АВВ₁~∆АСС₁, тогда стороны АВ₁ и АС₁, а также стороны АВ и АС пропорциональны. Рассмотрим ∆АВС и ∆АВ₁С₁. У них:
1) ∠ВАС=∠В₁АС₁=110°, как вертикальные,
2) АВ₁ и АВ пропорциональны,
3) АС и АС₁ пропорциональны,
следовательно ∆АВ₁С₁~∆АВС по двум сторонам и углу между ними. Тогда ∠АВС=∠АВ₁С₁=40° и ∠АСВ=∠АС₁В₁=30°.
Если рассматривать полученный пересечением высот ∆ВНС, то он остроугольный и продолжения сторон ∆АВС – ВС₁, СВ₁ и высота НА₁ являются в нём высотами, а высоты остроугольного треугольника являются биссектрисами углов ортоцентрического треугольника А₁В₁С₁, поэтому углы в ∆А₁В₁С₁ составят:
∠В₁=∠АВ₁С₁×2=40×2=80°
∠С₁=∠АС₁В₁×2=30×2=60°
Так как сумма углов треугольника составляет 180°, тогда:
∠А₁=180–80–60=180–140=40°
ХОЧУ ДОБАВИТЬ:
Величина углов АВС и АСВ не соответствует указанной величине на рисунке – по рисунку можно понять что ∠АВС=30°, а ∠АСВ=40°, хотя ход решения и результаты будут те же
1. х-одна сторона, тогда 3х - вторая сторона
75=3х*х
75=3*х^2
х^2=25
x=5
ответ : 5 см, 15 см
2. треугольник равнобедренный. значит можно этот треугольник рассмотреть как 2 прямоугольных. треугольник равнобедренный( гипотенуза 5, один из катетов равен 3) тогда по т. Пифагора высота равна 4.
остальные высоты можно найти через площадь. площадь равна 1/2*4*6=12
1/2*h1*5=12, h1 = 4,8. вторая высота такая же т.к. сторона, к которой проведена высота, такая же.
ответ : 4 см, 4,8см, 4,8 см
3. 8/а=5/в=7/с=1/4
8\а=1/4
а=32
5/в=1/4
в=20
7/с=1/4
с=28
Р=32+20+28=80
площадь находим через формулу Герона
S= sqrt {40*8*20*12}=sqrt{76800}=10*2*2*2*2sqrt{3}=160sqrt{3}
ответ : 80 см, 160sqrt{3} см
4.площадь прямоугольного треугольника вычисляется по формуле S = (a*b)/2.
a, b - соответственно катеты.
a/b=7/12 по условию задачи.
выражаем b через a: b=(a*12)/7.
Подставляем в формулу для площади:
S=(a*a*12)/7
168=(a*a*12)/7
a*a=168*7/6=196
a=14.
b=14*12/7=24.
ответ: 14 и 24
5. Пусть
a-верхнее основание
b-нижнее
h-высота
135-90= 45 градусов
треуг CDH -равнобедренный тк угол CHD-прямой
то BC=HD=6
то AD=AH+HD=6+6=12
S=(a+b)/2*h
S=(6+12)/2*6=54
ответ : 54
7.
сумма противоположных сторон описанного четырехугольника равны
АВСД -четырехугольник
АВ+СД=ВС+АД=12
r -радиус вписанной окр. с центром т.О
Sаод=0,5*r*АД
Sаов=0,5*r*АВ
Sвос=0,5*r*ВС
Sсод=0,5*r*СД
Sавсд=Sаод+Sаов+Sвос+Sсод=0,5*r(АД+АВ+ВС+СД)=0,5*5(12+12)=60
ответ : 60
8.
Сначала нужно доказать что треугольники подобны..
Угол C общ
угол B = углу A1B1C ( по фалесу) ,
значит треугольники подобны по двум углам.
21,5/9*7150,5/9=16 целых 6,5/9 см -A1C
18/9*7=14 см - В1С
10/9*7=70/9=7 целых 7/9 см А1В1
P= 16 целых 6,5/9 +14+ 7 целых 7/9=37 целых 13,5/9=38 целых 4,5/9=38,5
ответ: 38,5 см
∠А₁=40°
∠В₁=80°
∠С₁=60°
Объяснение:
Высоты тупоугольного треугольника находятся за пределами треугольника АВС, опускаясь на продолжение сторон. Высота ВВ₁ пересекает продолжение стороны СА – СВ₁, а высота СС₁ опускается на продолжение стороны ВА – ВС1 и точка их пересечения (ортоцентр) – это точка Н. Рассмотрим ∆АВВ₁ и ∆АСС₁. Они прямоугольные так как ∠АВ₁В=∠АС₁С=90°. ∠ВАВ₁ смежный с ∠ВАС, а сумма смежных углов составляет 180°, тогда ∠ВАВ₁=180– ∠А=180–110=70°. ∠ВАВ₁=∠САС₁=70°, как вертикальные. Сумма острых углов прямоугольного треугольника равна 90°, поэтому ∠АВВ₁=∠АСС₁=90–70=20°. Значит ∆АВВ₁~∆АСС₁, тогда стороны АВ₁ и АС₁, а также стороны АВ и АС пропорциональны. Рассмотрим ∆АВС и ∆АВ₁С₁. У них:
1) ∠ВАС=∠В₁АС₁=110°, как вертикальные,
2) АВ₁ и АВ пропорциональны,
3) АС и АС₁ пропорциональны,
следовательно ∆АВ₁С₁~∆АВС по двум сторонам и углу между ними. Тогда ∠АВС=∠АВ₁С₁=40° и ∠АСВ=∠АС₁В₁=30°.
Если рассматривать полученный пересечением высот ∆ВНС, то он остроугольный и продолжения сторон ∆АВС – ВС₁, СВ₁ и высота НА₁ являются в нём высотами, а высоты остроугольного треугольника являются биссектрисами углов ортоцентрического треугольника А₁В₁С₁, поэтому углы в ∆А₁В₁С₁ составят:
∠В₁=∠АВ₁С₁×2=40×2=80°
∠С₁=∠АС₁В₁×2=30×2=60°
Так как сумма углов треугольника составляет 180°, тогда:
∠А₁=180–80–60=180–140=40°
ХОЧУ ДОБАВИТЬ:
Величина углов АВС и АСВ не соответствует указанной величине на рисунке – по рисунку можно понять что ∠АВС=30°, а ∠АСВ=40°, хотя ход решения и результаты будут те же