4 точки не лежат на одной плоскости. Это значит, через них нельзя провести плоскость. Если прямая соединяет две любые точки, то другая прямая, соединяющая другие две точки обязана быть скрещивающейся, так как в противном случае через эти две прямые можно было бы провести плоскость и 4 точки лежали бы в одной плоскости. То есть, если прямая соединяет две точки, то прямая, соединяющая другие две точки будет с ней скрещивающейся.
Итак, ответ - для АВ скрещивающаяся - СD, для DC - АВ. Впрочем, это одна и та же пара. В этой задаче есть еще одна пара скрещивающихся прямых. ВС скрещивается с АD.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Итак, ответ - для АВ скрещивающаяся - СD, для DC - АВ. Впрочем, это одна и та же пара. В этой задаче есть еще одна пара скрещивающихся прямых. ВС скрещивается с АD.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²