В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
wolfe8
wolfe8
19.02.2022 01:59 •  Геометрия

Из точки F к плоскости α проведены две наклонные, каждая из которых образует со своей проекцией угол 30∘ . Угол между наклонными равен 60∘ , а расстояние между основаниями наклонных равно 18. Чему равно расстояние от точки F до плоскости α?

Показать ответ
Ответ:
aibar4
aibar4
11.01.2024 19:37
Для решения данной задачи воспользуемся теоремой косинусов.

Обозначим основание первой наклонной как A, основание второй наклонной - B, а точку пересечения наклонных - M. Также обозначим расстояние от точки F до точки М как х, а расстояние от точки М до плоскости α как у.

Так как угол между наклонными равен 60∘ , то имеем следующее:

AM = AB*cos(60∘) = AB * 1/2
BM = AB*sin(60∘) = AB * √3/2

Также нам дано, что угол между наклонными и их проекциями равен 30∘. Используя теорему косинусов для треугольника AMF, получим:

cos(30∘) = х / AM
√3/2 = х / (AB * 1/2)
√3/2 = 2х / AB
AB = 4х/√3

Теперь обратимся к треугольнику BFM. Используя теорему косинусов, получим:

cos(30∘) = у / BM
√3/2 = у / (AB * √3/2)
√3/2 = √3у / (4х/√3 * √3/2)
√3/2 = √3у / ( 4х * 3/2)
√3/2 = √3у / (6х)

Обратим внимание, что √3/2 сокращается. Имеем:

1 = у / (6х)
6х = у

Теперь найдём расстояние от точки F до плоскости α. Используя теорему Пифагора для треугольника ABC, получим:

AC^2 = AM^2 + MC^2 = AM^2 + (MA + AC)^2
AC^2 = AM^2 + (х + у)^2
AC = √(AM^2 + (х + у)^2)
AC = √((4х/√3)^2 + (6х)^2)
AC = √(16х^2/3 + 36х^2)
AC = √((16 + 36*3)/3) * х
AC = √(16 + 36*3)/√3 * х
AC = √(16 + 108)/√3 * х
AC = √124/√3 * х
AC = 2√31/√3 * х
AC = 2√31/3 * х

Таким образом, расстояние от точки F до плоскости α равно 2√31/3 * х.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота