Sокр = πr² = π· а²Sin²α/(4·(1+Sin(α/2))²).
Объяснение:
Треугольник АВС - равнобедренный =>
ВН - высота, биссектриса и медиана. =>
AH = a·Sin(α/2) => AC = 2·a·Sin(α/2).
Формула радиуса вписанной в треугольник окружности:
r = S/p.
Формула площади данного нам треугольника:
S = (1/2)·a²·Sinα.
Полупериметр треугольника АВС:
p = (2a+2·a·Sin(α/2))/2 = а(1+Sin(α/2)).
r = ((1/2)·a²·Sinα)/(а(1+Sin(α/2))) = a·Sinα/(2·(1+Sin(α/2))).
r² = а²Sin²α/(2·(1+Sin(α/2)))².
Окружность O1(O,OF) вписана в ромб;
Окружность О2(P,PE) вписана так, что касается лучей AD и BC и стороны CD;
CE=2
Доказать ACPD - прямоугольная трапеция
Доказательство:
AD//BC, CD-секущая
угол DCE=угол B=60C (соответственные)
угол CDH=угол А=120С (соответственные)
Окружность O2(P,PE)вписана
PC-биссектриса угла уголDCE
угол DCP=1/2DCE=30C
Аналогично угол DCP=1/2*120C=60C
В треугольнике CPD: уголDCP=30C и угол CDP=60C - угол CPD=90C
Что и требовалось доказать.
Трапеция состоит из трех таких треугольников: S ACPD=3Sтреугольника=8корень3/3
Ответ: S ACPD=8корень3/3
Sокр = πr² = π· а²Sin²α/(4·(1+Sin(α/2))²).
Объяснение:
Треугольник АВС - равнобедренный =>
ВН - высота, биссектриса и медиана. =>
AH = a·Sin(α/2) => AC = 2·a·Sin(α/2).
Формула радиуса вписанной в треугольник окружности:
r = S/p.
Формула площади данного нам треугольника:
S = (1/2)·a²·Sinα.
Полупериметр треугольника АВС:
p = (2a+2·a·Sin(α/2))/2 = а(1+Sin(α/2)).
r = ((1/2)·a²·Sinα)/(а(1+Sin(α/2))) = a·Sinα/(2·(1+Sin(α/2))).
r² = а²Sin²α/(2·(1+Sin(α/2)))².
Sокр = πr² = π· а²Sin²α/(4·(1+Sin(α/2))²).