из точки к плоскости проведены перпендикуляр и наклонная. длина проекции равна 6 см. Найдите длины перпендикуляра и наклонной если угол между перпендикуляром равен 30 градусам
Признак подобия треугольников: "Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол, пропорциональны в равном отношении, то такие треугольники подобны". В нашем случае наименьший угол треугольника лежит против меньшей стороны. Значит в треугольнике КLM этот угол лежит против стороны 2 см. Прилегающие к этому углу стороны равны 3см и 4см. В треугольнике АВС стороны, прилегающие к наименьшему углу равны 18см и 24см. Они пропорциональны соответствующим сторонам треугольника KLM с коэффициентом 6. Значит третья сторона треугольника АВС равна 2*6=12. Периметр треугольника АВС равна 12+18+24=54см. ответ: периметр треугольника АВС равен 54см.
Свойства правильного (равностороннего) треугольника: "В равностороннем треугольнике все углы равны между собой и равны 60°. В равностороннем треугольнике высоты являются и медианами, и биссектрисами. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают. Точка пересечения серединных перпендикуляров - центр описанной окружности.
Определение: "Центроид треугольника (также барицентр треугольника и центр тяжести треугольника) — точка пересечения медиан в треугольнике".
Следовательно, векторы ОА, ОВ и ОС - радиусы описанной около правильного треугольника окружности.
ОА=ОВ=ОС = R.
Сумма векторов ОВ + ОС = OD (по правилу сложения).
<BOC = 120°, <OBD = 60°.
|OD| = √(OA²+OC² - 2*OA*OCCos60°) или
|OD| = √(R²+R² - 2*R²*1/2) = R.
<BOD = 60°, <AOB = 120°. <BOD + <AOB = 180°.
Следовательно, AOD - развернутый угол, векторы ОА и OD равны по модулю и направлены в противоположные стороны. Сумма таких векторов равна нулю, значит сумма векторов ОА+ОВ+ОС = 0, что и требовалось доказать.
ответ: периметр треугольника АВС равен 54см.
Объяснение:
Свойства правильного (равностороннего) треугольника: "В равностороннем треугольнике все углы равны между собой и равны 60°. В равностороннем треугольнике высоты являются и медианами, и биссектрисами. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают. Точка пересечения серединных перпендикуляров - центр описанной окружности.
Определение: "Центроид треугольника (также барицентр треугольника и центр тяжести треугольника) — точка пересечения медиан в треугольнике".
Следовательно, векторы ОА, ОВ и ОС - радиусы описанной около правильного треугольника окружности.
ОА=ОВ=ОС = R.
Сумма векторов ОВ + ОС = OD (по правилу сложения).
<BOC = 120°, <OBD = 60°.
|OD| = √(OA²+OC² - 2*OA*OCCos60°) или
|OD| = √(R²+R² - 2*R²*1/2) = R.
<BOD = 60°, <AOB = 120°. <BOD + <AOB = 180°.
Следовательно, AOD - развернутый угол, векторы ОА и OD равны по модулю и направлены в противоположные стороны. Сумма таких векторов равна нулю, значит сумма векторов ОА+ОВ+ОС = 0, что и требовалось доказать.