Из точки к плоскости треугольника со сторонами 26 см 28 см 30 см проведён перпендикуляр основание которого вершина угла противоположная стороне 28 см расстояние от данной точки до этой стороны равна 20 см найдите расстояние от точки до плоскости треугольника
два угла по 50° и два угла по 130°
Объяснение:
Пусть один из углов равен х - градусов, тогда вертикальный к нему равен тоже х градусов. Остальные два вертикальных угла равны (180-х)°. Так как односторонний к углу в х градусов равен (180-х)°, а таких угла два при пересечении двух прямых.
Сумма трех углов без первого угла в х градусов равна:
х+(180-х)+(180-х)=360-х (*)
По условию задачи известно, что эта сумма (*) больше градусной меры угла в х градусов на 260°.
Составим уравнение
360-х=х+260
360-260=х+х
100=2х
2х=100
х=100:2
х=50° - мера первого угла
180-50=130° - мера второго угла.
Остальные два угла равны предыдущим, так как вертикальные.
Получается, что два угла по 50° , а два других угла по 130°
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.