Из точки к прямой проведены две наклонные. одна из них = 25 см, а её проекция = 15 см. найти длину другой наклонной, если она образует с прямой угол 30 градусов
Перед тем, как решать, сделаю небольшую оговорку. Если идёт речь об угле между каким-то прямыми, то тебе нужно всегда находить иименно ОСТРЫЙ угол. Принимаю, что CM - медиана. Нужно найти <CMB.
1)Воспользуюсь свойством медианы, проведённой к гипотенузе: CM = 1/2AB. Оно в прямоугольном треугольнике всегда работает. AM = MB = 1/2AB - так как CM-медиана. Поскольку CM = 1/2AB, то CM=MB, следовательно, ΔCMB - равнобедренный. <MCB = <B = 47°.
3)Так как сумма углов треугольника равна 180°, то <CMB = 180°-2<B = 180° - 94° = 86° задача готова )
Перед тем, как решать, сделаю небольшую оговорку. Если идёт речь об угле между каким-то прямыми, то тебе нужно всегда находить иименно ОСТРЫЙ угол. Принимаю, что CM - медиана. Нужно найти <CMB.
1)Воспользуюсь свойством медианы, проведённой к гипотенузе: CM = 1/2AB. Оно в прямоугольном треугольнике всегда работает. AM = MB = 1/2AB - так как CM-медиана. Поскольку CM = 1/2AB, то CM=MB, следовательно, ΔCMB - равнобедренный. <MCB = <B = 47°.
3)Так как сумма углов треугольника равна 180°, то <CMB = 180°-2<B = 180° - 94° = 86° задача готова )
Перед тем, как решать, сделаю небольшую оговорку. Если идёт речь об угле между каким-то прямыми, то тебе нужно всегда находить иименно ОСТРЫЙ угол. Принимаю, что CM - медиана. Нужно найти <CMB.
1)Воспользуюсь свойством медианы, проведённой к гипотенузе: CM = 1/2AB. Оно в прямоугольном треугольнике всегда работает. AM = MB = 1/2AB - так как CM-медиана. Поскольку CM = 1/2AB, то CM=MB, следовательно, ΔCMB - равнобедренный. <MCB = <B = 47°.
3)Так как сумма углов треугольника равна 180°, то <CMB = 180°-2<B = 180° - 94° = 86° задача готова )
Перед тем, как решать, сделаю небольшую оговорку. Если идёт речь об угле между каким-то прямыми, то тебе нужно всегда находить иименно ОСТРЫЙ угол. Принимаю, что CM - медиана. Нужно найти <CMB.
1)Воспользуюсь свойством медианы, проведённой к гипотенузе: CM = 1/2AB. Оно в прямоугольном треугольнике всегда работает. AM = MB = 1/2AB - так как CM-медиана. Поскольку CM = 1/2AB, то CM=MB, следовательно, ΔCMB - равнобедренный. <MCB = <B = 47°.
3)Так как сумма углов треугольника равна 180°, то <CMB = 180°-2<B = 180° - 94° = 86° задача готова )