Из точки М к плоскости альфа проведён перпендикуляр 7см и наклонная. Угол между перпендикуляром и наклонной равен 60 градусам. Найдите длины наклонной и проекции
Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы). Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Дан треугольник с отношением сторон 3:4:5. Это отношение сторон "египетского" треугольника. ∆ АВС- прямоугольный, АВ и АС - его катеты, ВС - гипотенуза, Н - середина ВС.
Центром окружности, описанной вокруг прямоугольного треугольника, является середина его гипотенузы. ВН=СН=5:2=2,5.
Обозначим центр сферы О.
Н - середина гипотенузы, АН - медиана ∆ АВС, и по свойству медианы прямоугольного треугольника АН=ВН=СН, т.е. все эти точки лежат на описанной окружности.
Сфера касается ВС в её середине, радиус ОН сферы касается и, значит, перпендикулярен плоскости ∆ АВС в точке Н, следовательно, перпендикулярен любой прямой, проходящей через Н. Искомые расстояния - наклонные с равными проекциями АН=ВН=СН. Если равны проекции наклонных к плоскости, проведенных из одной точки, то равны и наклонные. ⇒ ОА=ОВ=ОС.
По т.Пифагора ОА=√(ОН²+АН²)=√(36+6,25)=6,5 (ед.длины)
Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.
Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину.
Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Дан треугольник с отношением сторон 3:4:5. Это отношение сторон "египетского" треугольника. ∆ АВС- прямоугольный, АВ и АС - его катеты, ВС - гипотенуза, Н - середина ВС.
Центром окружности, описанной вокруг прямоугольного треугольника, является середина его гипотенузы. ВН=СН=5:2=2,5.
Обозначим центр сферы О.
Н - середина гипотенузы, АН - медиана ∆ АВС, и по свойству медианы прямоугольного треугольника АН=ВН=СН, т.е. все эти точки лежат на описанной окружности.
Сфера касается ВС в её середине, радиус ОН сферы касается и, значит, перпендикулярен плоскости ∆ АВС в точке Н, следовательно, перпендикулярен любой прямой, проходящей через Н. Искомые расстояния - наклонные с равными проекциями АН=ВН=СН. Если равны проекции наклонных к плоскости, проведенных из одной точки, то равны и наклонные. ⇒ ОА=ОВ=ОС.
По т.Пифагора ОА=√(ОН²+АН²)=√(36+6,25)=6,5 (ед.длины)