В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
PollyHyper
PollyHyper
08.12.2020 05:51 •  Геометрия

Из точки м, расположенной вне окружности, проведены касательные ма и мв ( а и в– точки касания). угол амв =90°, ав =10. найдите расстояние от точки м до центра окружности о.

Показать ответ
Ответ:
rabadanovaasya
rabadanovaasya
22.06.2020 02:53
Обозначим МН - расстояние от точки М до хорды АВ, это высота треугольника АВМ (равнобедренный). Пусть АМ= х, тогда из треугольника АМН, по т Пифагора находим: АН=√(x²-81) 
Треугольники ОАН и АМН - подобны по первому признаку, тогда : 
ОА/АМ=АН/НМ 
20/х=√(x²-81)/9 
180=x√(x²-81) 
32400=x^4-81x² 
пусть x²=t; t≥0 
t²-81t-32400=0 
t1=450 
t2=-288 - посторонний корень. 
Тогда: 
x²=450 
x=15√2 
Следовательно ходна АВ=2АН=2√(450-81)=√369=3√41 
(Не уверенна)
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота