Доказательство: АК = СМ, т. к. в равнобедренном тр-ке биссектрисы, проведенные к боковым сторонам равны (по теореме);
Четырехугольник АМКС, где СМ и АК - диагонали, Δ АОС равнобедренный , <ОАС = <МАО = <АСО = <КСО = х;
<АОС = <МОС = 180 - х - х = 180 - 2х.
ΔМОК - равнобедренный.
Т.к. АК = МС и АО = ОС , то ОМ = ОК, <ОМК = <ОКМ = (180 - <МОК)/2 = 180 - (180 - 2х)/2 = х, т.е <ОМК = <АСО и <ОАС = <ОКМ.
Если при пересечении двух прямых третьей внутренние разносторонние углы равны, то прямые параллельны (признаки параллельности прямых
ответ: ФТЛ? ДКР?
Объяснение:
#include <iostream>
using namespace std;
int main() {
int a, b, c;
cin >> a >> b >> c;
if (a == b && a == c && b == c) {
cout << 3;
}
if (a == b && a != c && b != c) {
cout << 2;
if (a != b && a == c && b != c) {
if (a != b && a != c && b == c) {
if (a != b && a != c && b != c) {
cout << 0;
return 0;
а вообще, я сам не знаю как эту задачу решить... Т_Т
Доказательство: АК = СМ, т. к. в равнобедренном тр-ке биссектрисы, проведенные к боковым сторонам равны (по теореме);
Четырехугольник АМКС, где СМ и АК - диагонали, Δ АОС равнобедренный , <ОАС = <МАО = <АСО = <КСО = х;
<АОС = <МОС = 180 - х - х = 180 - 2х.
ΔМОК - равнобедренный.
Т.к. АК = МС и АО = ОС , то ОМ = ОК, <ОМК = <ОКМ = (180 - <МОК)/2 = 180 - (180 - 2х)/2 = х, т.е <ОМК = <АСО и <ОАС = <ОКМ.
Если при пересечении двух прямых третьей внутренние разносторонние углы равны, то прямые параллельны (признаки параллельности прямых
ответ: ФТЛ? ДКР?
Объяснение:
#include <iostream>
using namespace std;
int main() {
int a, b, c;
cin >> a >> b >> c;
if (a == b && a == c && b == c) {
cout << 3;
}
if (a == b && a != c && b != c) {
cout << 2;
}
if (a != b && a == c && b != c) {
cout << 2;
}
if (a != b && a != c && b == c) {
cout << 2;
}
if (a != b && a != c && b != c) {
cout << 0;
}
return 0;
}
а вообще, я сам не знаю как эту задачу решить... Т_Т