Из точки на листе бумаги провели четыре луча, делящих плоскость на четыре угла. затем лист разрезали по биссектрисам этих углов на четыре части (которые также являются углами). докажите, что два из этих углов образуют в сумме 180°, и два других – тоже.
с английским нужно раскрыть скобки и поставить в нужную форму
1. We (1) (miss) the first act of the play because when we (2) (arrive) at the theatre the performance already (3) (start) .
2. At the time of the trial last summer Hinkley (4) (be) in prison for eight months.
3. The staff (5) (pay) weekly but now they receive a monthly salary.
4. Denise (6) (modal verb + leave) school early on Wednesday because she (7) (take) her driving test.
5. What’s the point in (8) (argue) with people who (9) (hold) very strong opinions?
6. Many of the survivors (10) (work) in the fields when the earthquake (11) (to strike) .
Phil (12) (stand) at the door soaked from head to toe: he (13) (run) in the rain.
8. Jim (14) (leave) on the early flight the next morning so he (15) (make) his excuses and (16) (leave) the party before midnight.
9. It seems to me, Minister, that the Government (17) (break) all its pre-election promises regarding the Health Service, (18) ?
10. It (19) (must + rain) really hard. All the passers-by (20) (be) soaked through.
Диагонали трапеции «высекают» в ней подобные треугольники. ∆ВОС~∆ АОД по равным углам: углы при основаниях равны как накрестлежащие; при точке О - как вертикальные. k=АО:ОС=3. Отношение площадей подобных фигур равно квадрату коэффициента их подобия. ⇒ Ѕ(АОД):Ѕ(ВОС)=3²=9 ⇒ Ѕ(АОД)=36•9=324.
Высота в ∆ АВО и ВОС общая. Отношение площадей треугольников с равными высотами равно отношению сторон, к которым высоты проведены. Ѕ(АВО)=3Ѕ(ВСО)=36•3)=108 Аналогично Ѕ(СОД)=3Ѕ(ВОС)=108. (попутно заметим, что площади треугольников, образованных частями диагоналей и боковыми сторонами трапеции всегда равны именно по этому свойству). Площадь трапеции АВСД равна сумме площадей четырех треугольников. S(АВСД)=36+324+2•108=576 ( ед. площади)