Из точки о к плоскости α проведены перпендикуляр и наклонная. Вычислите угол между наклонной, если известно, что длины перпендикуляра и проекции наклонной на плоскость равны 5 см.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Объяснение:
Дано: ABCD - параллелограмм;
РК║АС
Доказать: РМ=NK
Доказательство:
1) Рассмотрим АМКС.
АМ║СК (ABCD - параллелограмм)
МК║АС (условие)
⇒ АМКС - параллелограмм (по определению)
⇒ АМ=СК (свойство параллелограмма)
2) Рассмотрим PNCA.
АP║СN (ABCD - параллелограмм)
PN║AC (условие)
⇒ PNCA- параллелограмм (по определению)
⇒ АP=СN (свойство параллелограмма)
3) Рассмотрим ΔРМА и ΔNKC
АМ=СК (п.1)
АP=СN (п.2)
∠1=∠2 - соответственные при BC║AD и секущей DK
∠3=∠2 - соответственные при AB║DK и секущей DP
⇒ ∠1=∠3
⇒ ΔРМА = ΔNKC (по двум сторонам и углу между ними)
⇒ PM=NK
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.