Из точки С на плоскости М проведена наклонная прямая линия и на ней взяты точки K и D, причем CK=7см и CD=21см. Точка K удалена от плоскости М на 5 см. Найти расстояние точки D от плоскости М
Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен.
1. 13
Объяснение:
1.
Проведём FH перпендикулярно DE следовательно треугольник FHE прямоугольный.Треугольник DCE прямоугольный следовательно треугольник FCE тоже прямоугольный.
EF- биссектриса следовательно угол 1 = углу 2.Следовательно FHE= FCE(по острому углу) следовательно FH=FC=13
ответ: 13
2.
Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен.
(Рисунок в закрепе)
3.
= 180 - 68 - 68 = 44°
Объяснение:
Биссектриса делит угол пополам.
Если угол между биссектрисой и основанием 34°, то угол при основании = 34*2 = 68°
Углы при основании равнобедренного треугольника равны, второй угол при основании тоже = 68°
Сумма углов треугольника = 180°, значит угол при вершине = 180 - 68 - 68 = 44°
Медиана в равнобедренном треугольнике, опущенная к основанию, также является и биссектрисой,
поэтому угол между медианой, проведенной к основанию, и боковой стороной будет угол = 44/2 = 22°