Из точки удалённой от плоскости на расстоянии 10 см , проведены две наклонные , образующие с плоскостью углы в 30° , а между собой угол в 60 ° . найдите расстояние между концами наклонных
Дано: α║β, а⊂α, b⊂β. Доказать: прямые а и b не имеют общих точек. Доказательство: Предположим, что прямые а и b пересекаются в некоторой точке О. Тогда точка О принадлежит и плоскости α (так как лежит на прямой а, лежащей в плоскости α) и плоскости β (так как лежит на прямой b, лежащей в плоскости β). Значит, плоскости α и β имеют общую точку. Если плоскости имеют общую точку, то они имеют и общую прямую, по которой пересекаются. Но это противоречит условию: по условию плоскости параллельны. Предположение не верно. Прямые а и b не имеют общих точек.
Или Предположим, а∩b = O. O∈a, a⊂α, ⇒ O∈α O∈b, b⊂β, ⇒ O∈β. Но α║β, ⇒ предположение не верно, а и b не имеют общих точек.
Высота пирамиды пересекает основание в точке, являющейся центром описанной вокруг основания окружности Радиус описанной окружности найдём по формуле Герона
Полупериметр p p = (5+5+6)/2 = 8 Площадь S = √(8*(8-5)*(8-5)*(8-6)) = √(8*(8-5)*(8-5)*(8-6)) = √(8*3*3*2) = 4*3 = 12 R = 5*5*6/(4*12) = 25/8 см Радиус описанной окружности основания R как катет, высота h как вторoй катет, и длина бокового ребра L как гипотенуза образуют прямоугольный треугольник. И высота по Пифагору h²+R² = L² h² = L²-R² = 100-625/64 = 5775/64 h = √(5775/64) = 5√231/8 ≈ 9,499
Доказать: прямые а и b не имеют общих точек.
Доказательство:
Предположим, что прямые а и b пересекаются в некоторой точке О.
Тогда точка О принадлежит и плоскости α (так как лежит на прямой а, лежащей в плоскости α) и плоскости β (так как лежит на прямой b, лежащей в плоскости β).
Значит, плоскости α и β имеют общую точку. Если плоскости имеют общую точку, то они имеют и общую прямую, по которой пересекаются.
Но это противоречит условию: по условию плоскости параллельны.
Предположение не верно.
Прямые а и b не имеют общих точек.
Или
Предположим, а∩b = O.
O∈a, a⊂α, ⇒ O∈α
O∈b, b⊂β, ⇒ O∈β.
Но α║β, ⇒ предположение не верно,
а и b не имеют общих точек.
Радиус описанной окружности найдём по формуле Герона
Полупериметр p
p = (5+5+6)/2 = 8
Площадь
S = √(8*(8-5)*(8-5)*(8-6)) = √(8*(8-5)*(8-5)*(8-6)) = √(8*3*3*2) = 4*3 = 12
R = 5*5*6/(4*12) = 25/8 см
Радиус описанной окружности основания R как катет, высота h как вторoй катет, и длина бокового ребра L как гипотенуза образуют прямоугольный треугольник. И высота по Пифагору
h²+R² = L²
h² = L²-R² = 100-625/64 = 5775/64
h = √(5775/64) = 5√231/8 ≈ 9,499