В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Вазген228
Вазген228
10.09.2022 19:39 •  Геометрия

Из точки В, не лежащей на окружности, проведена касательная АВ к окружности, расстояние от точки В до центра окружности равно 13 см, а расстояние от точки В до точки касания А с окружностью равно 12 см. Найдите расстояние от центра окружности до касательной АВ

Показать ответ
Ответ:
trofimovigor07
trofimovigor07
24.04.2021 08:48
Точка О2 - центр вписанной окружности в  тр-ник АВС. Точка О1 - центр заданной окружности. 
Около тр-ка АВС опишем окружность.
АО2, ВО2 и СО2 - биссектрисы соответствующих углов.
Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К. 
∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2.
∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине.
Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный.
КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности.
Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и  в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают. 
О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности.
Доказано.
Две прямые, касающиеся данной окружности в точках а и в, пересекаются в точке с. докажите, что центр
0,0(0 оценок)
Ответ:
anita4566
anita4566
11.04.2023 22:50

ответ:В треугольной пирамиде проекция бокового ребра L на основание совпадает с отрезком, равным (2/3) высоты h треугольника в основании пирамиды.

h =(3/2)* (L*cos 60°) = (3/2)*(√3*(1/2)) = 3√3/4.

Сторона а основания равна:

а = h/cos 30° =  (3√3/4)/(√3/2) = 3/2.

Высота пирамиды H = L*sin 60° = √3*(√3/2) = 3/2.

Основание пирамиды вписывается в шар по окружности радиуса Ro.

Ro = (1/3)h/(sin 30°) = (1/3)*(3√3/4)/(1/2) = √3/2.

Теперь переходим к рассмотрению осевого сечения пирамиды через два боковых ребра, развёрнутых в одну плоскость.

Для шара это будет диаметральное сечение.

Радиус шара Rш = (abc)/(4S).

Здесь a и b - боковые рёбра, с - диаметр описанной около основания пирамиды окружности (с = 2Ro = √3).

Сечение S = (1/2)H*(2Ro) = (1/2)*(3/2)*√3 = 3√3/4.

Получаем Rш = (√3*√3*√3)/(4*(3√3/4)) = 1.

Объём шара V = (4/3)πR³ = (4/3)π куб

Объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота