Из учебников, среди которых 3 экземпляра по алгебре, 7 экземпляров по геометрии и 7 экземпляров по тригонометрии, надо выбрать по одному экземпляру каждого учебника. Сколькими можно это сделать?
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.
1) P=(АВ+ВС+AC)=150, треугольник равнобедренный, значит АВ=ВС
Так как длина стороны АС известна , то сумма длин 2 сторон (АВ+ВС)=
150-38=112
так как АВ=ВС, то 112/2=56 длина одной стороны АВ и ВС
2) Сумма градусов углов треугольника равна 180
соответственно третий угол равен (180-89-38)=53 °
3) сумма внешнего и внутреннего угла при одной вершине равна 180°
Значит, внутренний угол при вершине А равен 180-132=48°
по свойству равнобедеренных треугольников, угол С также равен 48°. Сума всех углов равна 180, значит (180-48-48)=84°
4) Так как угол АМС 122, а при одной вершине сумма внутреннего и внешнего равно 180, то угол АМВ= 180-122=58°
Угол АВС равен 102, угол АМВ равен 58°, сумма всех углов треугольника АВМ равна 180, значит угол ВАМ=180-102-58=20°
Так как АМ- биссектриса, и разбивает угол ВАС пополам, то угол ВАС= 20*2=40°
Теперь мы знаем два угла,ВАС= 40°, АВС=102°
Значит, угол АСВ=180-40-102=38°
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.