Прямой параллелепипед, основанием которого служит прямоугольник, называют прямоугольным параллелепипедом.
У прямоугольного параллелепипеда все грани — прямоугольники.
Длина вектора равна длине отрезка ( над векторами нужно ставить стрелки).
|BB₁ |=12 ( противоположные ребра равны) ;
|AD|=11 ;
|CD₁ |=√153 ( из прямоугольного ΔDСD1 пот. Пифагора CD₁²=3²+12²) ;
|BD|=√130 ( из прямоугольного ΔАВD пот. Пифагора CD₁²=3²+11²) ;
| BD₁ |= √146 (Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений: BD₁²=3²+4²+11² , BD₁²=146 )
Задача: Дан ΔABC — равнобедренный, AC = BC = 10, AB = 16. Найти tg A, sin A.
Проведем высоту CH в ΔABC к стороне AB. Образуется два равных треугольника, т.к. ΔABC равнобедренный. AH = HB = 16/2 = 8.
Р-м ΔACH:
∠AHC = 90°, т.к CH — перпендикуляр к AH (AH∈AB) ⇒ ΔACH — прямоугольный.
Синус угла равен отношению противолежащего катета к гипотенузе.
Найдем катет CH за т. Пифагора:
Тогда синус ∠A будет равен:
Тангенс угла равен отношению противолежащего катета к прилежащему:
ответ: tg A = 0,75; sin A = 0,6.
Прямой параллелепипед, основанием которого служит прямоугольник, называют прямоугольным параллелепипедом.
У прямоугольного параллелепипеда все грани — прямоугольники.
Длина вектора равна длине отрезка ( над векторами нужно ставить стрелки).
|BB₁ |=12 ( противоположные ребра равны) ;
|AD|=11 ;
|CD₁ |=√153 ( из прямоугольного ΔDСD1 пот. Пифагора CD₁²=3²+12²) ;
|BD|=√130 ( из прямоугольного ΔАВD пот. Пифагора CD₁²=3²+11²) ;
| BD₁ |= √146 (Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений: BD₁²=3²+4²+11² , BD₁²=146 )
Задача: Дан ΔABC — равнобедренный, AC = BC = 10, AB = 16. Найти tg A, sin A.
Проведем высоту CH в ΔABC к стороне AB. Образуется два равных треугольника, т.к. ΔABC равнобедренный. AH = HB = 16/2 = 8.
Р-м ΔACH:
∠AHC = 90°, т.к CH — перпендикуляр к AH (AH∈AB) ⇒ ΔACH — прямоугольный.
Синус угла равен отношению противолежащего катета к гипотенузе.
Найдем катет CH за т. Пифагора:
Тогда синус ∠A будет равен:
Тангенс угла равен отношению противолежащего катета к прилежащему:
ответ: tg A = 0,75; sin A = 0,6.