Высота равнобедренной трапеции отсекает на большом основании отрезок - (16-6)/2= 5 см. Этот отрезок, боковая сторона и высота образуют прямоугольный треугольник с гипотенузой 13 см, катетом 5 см и другим катетом - высота. По т. Пифагора высота -
√(13²-5²)=12 см. Площадь -
S= 12*(6+16)/2=132 см².
№4
Треугольник АВС равнобедренный (АВ=ВС=25 см) с основанием АС=40 см. Высота, опущенная на основание является медианой. Треугольник, образованной высотой, боковой стороной и половиной основания - прямоугольный. Гипотенуза - боковая сторона 25 см, катет - половина основания - 40/2=20 см, второй катет - высота. По т. Пифагора второй катет -
В основании правильной четыреухгольной пирамиды SABCD лежит квадрат ABCD, боковые грани — равные треугольники с общей вершиной S. Высота пирамиды Н опускается в центр пересечения O диагоналей квадрата основания из вершины пирамиды S. Угол между боковой гранью и плоскостью основания пирамиды является углом между высотой h(бок) боковой грани (перпендикуляром SM, опущенным из вершины S пирамиды к основанию AB равнобедренного треугольника боковой грани) и плоскостью основания. В прямоугольном треугольнике SOM, SM - гипотенуза, SO=H = катет, противолежащий углу 30 градусов, MO - катет, прилежащий углу 30 градусов. МО = половине стороны квадрата основания пирамиды. МО = AB/2 = 6/2 = 3 см Катет, противолежащий углу 30 градусов, равен половине гипотенузы⇒ SM = 2H по теореме Пифагора: H² + MO² = (2H)² H² + 9 = 4H² 3H² = 9 H² = 3 H = √3 см
В прямоугольном треугольнике SOA, боковое ребро пирамиды SA - гипотенуза, SO=H=√3 - катет, противолежащий искомому углу, AO - катет, прилежащий искомому углу. AO= половине диагонали квадрата основания пирамиды. AO = AB*√2 / 2 = 6 * √2 / 2 = 3√2 см
Тангенс искомого угла - отношение противолежащего катета к прилежащему. √3 / 3√2 = 1 / √6 ≈ 0.4082, что приблизительно соответствует углу 22°12' (по таблице Брадиса)
Угол между боковым ребром и плоскостью основания пирамиды приблизительно равен 22 градуса 12 минут.
Объем правильной четырехугольной пирамиды равен: V = 1/3 * H * a² V = 1/3 * √3 * 6² = 12√3 см²
Объяснение:
№3
Высота равнобедренной трапеции отсекает на большом основании отрезок - (16-6)/2= 5 см. Этот отрезок, боковая сторона и высота образуют прямоугольный треугольник с гипотенузой 13 см, катетом 5 см и другим катетом - высота. По т. Пифагора высота -
√(13²-5²)=12 см. Площадь -
S= 12*(6+16)/2=132 см².
№4
Треугольник АВС равнобедренный (АВ=ВС=25 см) с основанием АС=40 см. Высота, опущенная на основание является медианой. Треугольник, образованной высотой, боковой стороной и половиной основания - прямоугольный. Гипотенуза - боковая сторона 25 см, катет - половина основания - 40/2=20 см, второй катет - высота. По т. Пифагора второй катет -
√(25²-20²)=15 см;
площадь - S=15*40/2=300 см².
В основании правильной четыреухгольной пирамиды SABCD лежит квадрат ABCD, боковые грани — равные треугольники с общей вершиной S. Высота пирамиды Н опускается в центр пересечения O диагоналей квадрата основания из вершины пирамиды S.
Угол между боковой гранью и плоскостью основания пирамиды является углом между высотой h(бок) боковой грани (перпендикуляром SM, опущенным из вершины S пирамиды к основанию AB равнобедренного треугольника боковой грани) и плоскостью основания.
В прямоугольном треугольнике SOM, SM - гипотенуза, SO=H = катет, противолежащий углу 30 градусов, MO - катет, прилежащий углу 30 градусов. МО = половине стороны квадрата основания пирамиды.
МО = AB/2 = 6/2 = 3 см
Катет, противолежащий углу 30 градусов, равен половине гипотенузы⇒ SM = 2H
по теореме Пифагора:
H² + MO² = (2H)²
H² + 9 = 4H²
3H² = 9
H² = 3
H = √3 см
В прямоугольном треугольнике SOA, боковое ребро пирамиды SA - гипотенуза, SO=H=√3 - катет, противолежащий искомому углу, AO - катет, прилежащий искомому углу. AO= половине диагонали квадрата основания пирамиды.
AO = AB*√2 / 2 = 6 * √2 / 2 = 3√2 см
Тангенс искомого угла - отношение противолежащего катета к прилежащему.
√3 / 3√2 = 1 / √6 ≈ 0.4082, что приблизительно соответствует углу 22°12' (по таблице Брадиса)
Угол между боковым ребром и плоскостью основания пирамиды приблизительно равен 22 градуса 12 минут.
Объем правильной четырехугольной пирамиды равен:V = 1/3 * H * a²
V = 1/3 * √3 * 6² = 12√3 см²