Если диагонали внутри ромба делятся точкой пересечения на равные отрезки,то один отрезок 5 см, другой 12. По теореме Пифагора для любого из 4 треугольников,образованных диагоналями квадрат гипотенузы равен сумме квадратов катетов. Вроде как диагонали к тому же пересекаются под прямым углом. Значит квадрат стороны ромба равен 25+144=169. Следовательно сама сторона равна 13 см. Следовательно периметр равен 13*4=52. Факты только проверьте. Я то неуверенна,что пересекаются под прямым углом и делятся на равные отрезки.
Дано: ABCD - ромб, BD=24см, AC=10см;
Найти: <A, <B, <C, <D;
Решение.
1) AB=BC=CD=AD, ВО=½BD, BO=12 и AO=½AC AO=5(по свойствам ромба), по теореме Пифагора AB²=BO²+AO², АВ²=12²+5², AB²=169, AB=13;
2)<A=<B=<C=<D, <ABO=<CBO, <BAO=<DAO(по свойствам ромба), sin ABO = AO/AB,
sin = 5/13, sin ABO≈0.38 <ABO≈68°, <BAO=180°-<BOA-<ABO, <BAO=180°-90°-68°=22°,
3) <A=44°, <B=136°, <C=44°, <D=136°
ответ: <A=44°, <B=136°, <C=44°, <D=136°.