Из вершины с, прямоугольного треугольника проведен перпендикуляр abc , угол c= 90 градуов.проведен перпендикуляр cd к его плоскости. найти длины наклоненных ad и bd, а так же длину перпендмкуляра cd при следующих данных: cab равен 45 градусов, угол adc равен 30 градусов , угол ac равен 30
<АВМ=<АВС-<МВС=50-30=20°
<АСМ=<АСВ-<МСВ=50-10=40°
Рассмотрим треугольник ВМС:
<ВМС=180-<МВС-<МСВ=180-30-10=140°.
По теореме синусов МС/sin 30=BC/ sin 140
MC=BC*sin 30/sin 140=BC/2sin (180-40)=BC/2sin 40
Если в треугольнике АВС из вершины А опустить высоту АН на основание ВС, то она же будет и медиана и биссектриса. Из полученного треугольника АНС (<НАС=80/2=40°, <АНС=90°, НС=ВС/2) по теореме синусов
НС/sin 40=АC/ sin 90
АC=BC/2sin 40
Получается, что МС=АС, значит треугольник АМС - равнобедренный
<САМ=<АМС=(180-<ACM)/2=(180-40)/2=70°.
Опустим перпендикуляр на нижнее большее основание трапеции из вершины тупого угла. Получим высоту, которая равна меньшей боковой сторое, т.е. √3. Перпендикуляр отколол от трапеции прямоугольный треугольник, в котором острые углы 30° и 60°. Гипотенуза, т.е. большая боковая сторона в трапеции в два раза больше, чем катет против 30°, а другой катет равен √3. По если катет х, то гипотенуза 2х, а второй катет √3. Найдем х. По теореме ПИфагора 4х²-х²=3. Т.к. х-положит., то х=1. Значит, нижнее основание 4=1=5, а верхнее 4, высота трапеции √3. найдем площадь, как произведение полусуммы оснований на высоту ((4+5)*√3)/2=4,5√3 9см²)