Из вершины С треугольника АВС проведены биссектрисы внутреннего и внешнего угла. Биссектриса внешнего угла составляет с продолжением стороны АВ угол 55°. Найти угол между стороной АВ и биссектрисой внутренного угла.
Внешний угол с внутренним в сумме дают 180 градусов. В равнобедренном треугольнике внешний угол при основании равен 140 градусов, значит внутренний угол при основании равен 180- 140 = 40 градусов. А в равнобедренном треугольнике углы при основании равны, значит и второй угол при основании треугольника равен 40 градусов. Сумма внутренних углов треугольника равна 180 градусов, тогда третий угол при вершине треугольника равен 180-(40+ 40) = 100 градусов. И внешний угол при вершине р/б треугольника равен 180-100 = 80 градусов.
Точка M равноудалена от всех сторон правильного треугольника ABC. Значит, проекции наклонных – расстояний от М до сторон основания, – равны радиусу вписанной в этот треугольник окружности, а все наклонные, соединяющие М и вершины углов основания равны и наклонены к плоскости АВС под одинаковым углом. Их проекции равны радиусу описанной вокруг основания окружности. При этом МО - перпендикулярен плоскости основания и О - центр АВС.
1)
Две плоскости перпендикулярны тогда и только тогда, когда одна из них проходит через перпендикуляр к другой плоскости.
Прямая перпендикулярна плоскости, если она перпендикулярна двум прямым, лежащим в этой плоскости.
По т. о трех перпендикулярах СВ перпендикулярен АН и МН, значит, СВ ⊥ плоскости АМН (АМО).
Плоскость СМВ проходит через прямую СВ, перпендикулярную плоскости АМК. Следовательно, плоскости СМВ и АМО (АМН) перпендикулярны, ч.т.д.
2)
Угол между плоскостью ВМС и плоскостью АВС - двугранный угол между ними. Его величина равна величине линейного угла МНО, образованного при пересечении этих плоскостей перпендикулярной им плоскостью МНА (её перпендикулярность им доказана выше).
МО=2.
ОН=r вписанной в АВС окружности.
r=a/(2√3)=2/√3
tg ∠MHO=MO/OH=2:(2/√3)=√3- это тангенс 60º⇒
Угол между плоскостью ВМС и плоскостью АВС=60º
3)
Угол между MC и плоскостью ABC также найдем через его тангенс.
tg ∠MCO=MO/OC
MO=2
CО равно радиусу описанной вокруг правильного треугольника окружности:
OC=R =a/√3=4/√3
tg∠MCO=2:(4/√3)=√3/2= ≈0,866. что по таблице тангенсов является тангенсом угла ≈ 40º54'
Точка M равноудалена от всех сторон правильного треугольника ABC. Значит, проекции наклонных – расстояний от М до сторон основания, – равны радиусу вписанной в этот треугольник окружности, а все наклонные, соединяющие М и вершины углов основания равны и наклонены к плоскости АВС под одинаковым углом. Их проекции равны радиусу описанной вокруг основания окружности. При этом МО - перпендикулярен плоскости основания и О - центр АВС.
1)
Две плоскости перпендикулярны тогда и только тогда, когда одна из них проходит через перпендикуляр к другой плоскости.
Прямая перпендикулярна плоскости, если она перпендикулярна двум прямым, лежащим в этой плоскости.
По т. о трех перпендикулярах СВ перпендикулярен АН и МН, значит, СВ ⊥ плоскости АМН (АМО).
Плоскость СМВ проходит через прямую СВ, перпендикулярную плоскости АМК. Следовательно, плоскости СМВ и АМО (АМН) перпендикулярны, ч.т.д.
2)
Угол между плоскостью ВМС и плоскостью АВС - двугранный угол между ними. Его величина равна величине линейного угла МНО, образованного при пересечении этих плоскостей перпендикулярной им плоскостью МНА (её перпендикулярность им доказана выше).
МО=2.
ОН=r вписанной в АВС окружности.
r=a/(2√3)=2/√3
tg ∠MHO=MO/OH=2:(2/√3)=√3- это тангенс 60º⇒
Угол между плоскостью ВМС и плоскостью АВС=60º
3)
Угол между MC и плоскостью ABC также найдем через его тангенс.
tg ∠MCO=MO/OC
MO=2
CО равно радиусу описанной вокруг правильного треугольника окружности:
OC=R =a/√3=4/√3
tg∠MCO=2:(4/√3)=√3/2= ≈0,866. что по таблице тангенсов является тангенсом угла ≈ 40º54'