Из вершины В прямоугольника АВСD восстановлен перпендикуляр МВ к плоскости прямугольника, расстояния от точки М до остальных вершин прямоутольника равны 6 см, 7см 9 см, Найдите длину перпендикуляра МВ,
Найдите площадь сечения проходящей через боковое ребро и меньшую диагональ основания (через BD и BB₁ ≡ BD и DD₁ )
решение: Меньшая диагональ призмы BD = AB .
ABCD ромб ; AB || DC ⇒ ∡BAD + ∡ABC=180° (сумма односторонних углов) ∡BAD = 180° - 120° = 60° . Таким образом в равнобедренном треугольнике ABD ( ABCD ромб ⇒AB=AD ) один из углов равен 60° , следовательно → равносторонний и поэтому
BD = AB = 5 см .
Сечение BDD₁B₁ . Площадь сечения: Sсеч = BD*DD₁ =AB*DD₁
Из Sбок =(4*AB)*DD₁ ⇒AB*DD₁ = Sбок/4 =240/4 = 60 (см²)
Sсеч = 60 (см²) .
-------
Пусть O и O₁ точки пересечения диагоналей оснований ABCD и A₁B₁C₁D₁ соответственно плоск(A₁AC) ≡ плоск(A₁AO)
плоск(A₁AC) ⊥ плоск(DBB₁ ), т.к. плоск(A₁AC) происходит через AO , которая перпендикулярна BD и OO₁. Очевидно OO₁ || BB₁
Найдите площадь сечения проходящей через боковое ребро и меньшую диагональ основания (через BD и BB₁ ≡ BD и DD₁ )
решение: Меньшая диагональ призмы BD = AB .
ABCD ромб ; AB || DC ⇒ ∡BAD + ∡ABC=180° (сумма односторонних углов) ∡BAD = 180° - 120° = 60° . Таким образом в равнобедренном треугольнике ABD ( ABCD ромб ⇒AB=AD ) один из углов равен 60° , следовательно → равносторонний и поэтому
BD = AB = 5 см .
Сечение BDD₁B₁ . Площадь сечения: Sсеч = BD*DD₁ =AB*DD₁
Из Sбок =(4*AB)*DD₁ ⇒AB*DD₁ = Sбок/4 =240/4 = 60 (см²)
Sсеч = 60 (см²) .
-------
Пусть O и O₁ точки пересечения диагоналей оснований ABCD и A₁B₁C₁D₁ соответственно плоск(A₁AC) ≡ плоск(A₁AO)
плоск(A₁AC) ⊥ плоск(DBB₁ ), т.к. плоск(A₁AC) происходит через AO , которая перпендикулярна BD и OO₁. Очевидно OO₁ || BB₁
N1. Дано : ABCA₁B₁C₁ - правильная треугольная призма ,
BC= AC= AB= 6 см , CA₁ = 10 см . Sбок -? Sпол - ?
решение: Sбок = 3*S(AA₁C₁C) = (3*AC)*AA₁
Из ∆A₁AC с теоремы Пифагора:
AA₁ =√(CA₁² -A₁C² ) =√(10² -6² ) =8 (см). || 2*3 ;2*4 ; 2*5 ||
Sбок = (3*6)*8 =144 (см²)
Sпол =Sбок +2*S(ABC) , но S(ABC) =AB²√3 /4 =6²√3 / 4 = 9√3
Sпол =144 + 18√3 ( см² ) || 18(8 +√3) ||
-------
N2. Дано : ABCDA₁B₁C₁D₁ - прямая призма ,
ABCD-ромб, AB= 5 см ; ∡ABC =120° , Sбок =240 см²
Найдите площадь сечения проходящей через боковое ребро и меньшую диагональ основания (через BD и BB₁ ≡ BD и DD₁ )
решение: Меньшая диагональ призмы BD = AB .
ABCD ромб ; AB || DC ⇒ ∡BAD + ∡ABC=180° (сумма односторонних углов) ∡BAD = 180° - 120° = 60° . Таким образом в равнобедренном треугольнике ABD ( ABCD ромб ⇒AB=AD ) один из углов равен 60° , следовательно → равносторонний и поэтому
BD = AB = 5 см .
Сечение BDD₁B₁ . Площадь сечения: Sсеч = BD*DD₁ =AB*DD₁
Из Sбок =(4*AB)*DD₁ ⇒AB*DD₁ = Sбок/4 =240/4 = 60 (см²)
Sсеч = 60 (см²) .
-------
Пусть O и O₁ точки пересечения диагоналей оснований ABCD и A₁B₁C₁D₁ соответственно плоск(A₁AC) ≡ плоск(A₁AO)
плоск(A₁AC) ⊥ плоск(DBB₁ ), т.к. плоск(A₁AC) происходит через AO , которая перпендикулярна BD и OO₁. Очевидно OO₁ || BB₁
N1. Дано : ABCA₁B₁C₁ - правильная треугольная призма ,
BC= AC= AB= 6 см , CA₁ = 10 см . Sбок -? Sпол - ?
решение: Sбок = 3*S(AA₁C₁C) = (3*AC)*AA₁
Из ∆A₁AC с теоремы Пифагора:
AA₁ =√(CA₁² -A₁C² ) =√(10² -6² ) =8 (см). || 2*3 ;2*4 ; 2*5 ||
Sбок = (3*6)*8 =144 (см²)
Sпол =Sбок +2*S(ABC) , но S(ABC) =AB²√3 /4 =6²√3 / 4 = 9√3
Sпол =144 + 18√3 ( см² ) || 18(8 +√3) ||
-------
N2. Дано : ABCDA₁B₁C₁D₁ - прямая призма ,
ABCD-ромб, AB= 5 см ; ∡ABC =120° , Sбок =240 см²
Найдите площадь сечения проходящей через боковое ребро и меньшую диагональ основания (через BD и BB₁ ≡ BD и DD₁ )
решение: Меньшая диагональ призмы BD = AB .
ABCD ромб ; AB || DC ⇒ ∡BAD + ∡ABC=180° (сумма односторонних углов) ∡BAD = 180° - 120° = 60° . Таким образом в равнобедренном треугольнике ABD ( ABCD ромб ⇒AB=AD ) один из углов равен 60° , следовательно → равносторонний и поэтому
BD = AB = 5 см .
Сечение BDD₁B₁ . Площадь сечения: Sсеч = BD*DD₁ =AB*DD₁
Из Sбок =(4*AB)*DD₁ ⇒AB*DD₁ = Sбок/4 =240/4 = 60 (см²)
Sсеч = 60 (см²) .
-------
Пусть O и O₁ точки пересечения диагоналей оснований ABCD и A₁B₁C₁D₁ соответственно плоск(A₁AC) ≡ плоск(A₁AO)
плоск(A₁AC) ⊥ плоск(DBB₁ ), т.к. плоск(A₁AC) происходит через AO , которая перпендикулярна BD и OO₁. Очевидно OO₁ || BB₁