Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений 5²+9²+13²=25+81+169=275
Диагональ прямоугольного параллелепипеда равна √275=5√11
Если в основании 5 и 9, диагональ основания равна √(25+81)=√106, высота 13, тогда площадь диагонального сечения 13√106
Если за основание взять прямоугольник со сторонами 5 и 13, то диагональ основания √(25+169)=√194, искомая площадь 9√194,
Если за основание принять прямоугольник со сторонами 9 и 13, то диагональ основания √(81+169)=√250=5√10, и искомая площадь
5*5√10=25√10
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений 5²+9²+13²=25+81+169=275
Диагональ прямоугольного параллелепипеда равна √275=5√11
Если в основании 5 и 9, диагональ основания равна √(25+81)=√106, высота 13, тогда площадь диагонального сечения 13√106
Если за основание взять прямоугольник со сторонами 5 и 13, то диагональ основания √(25+169)=√194, искомая площадь 9√194,
Если за основание принять прямоугольник со сторонами 9 и 13, то диагональ основания √(81+169)=√250=5√10, и искомая площадь
5*5√10=25√10