Изображен берег моря и сторожевой катер, который стоит в точке A, находящейся на морской границе. Катеру предписано двигаться строго вдоль границы, то есть находиться на постоянном расстоянии от берега. Нарисуйте линию, по которой должен двигаться катер.
Соотношение между сторонами и углами прямоугольного треугольника. Решение прямоугольных треугольников
В прямоугольном треугольнике катет, противоположный одного из острых углов, равна произведению гипотенузы на синус этого угла.
В прямоугольном треугольнике катет, противоположный одного из острых углов, равна произведению прилегающего катета на тангенс этого угла.
В прямоугольном треугольнике катет, прилегающий к одному из острых углов, равна произведению гипотенузы на косинус этого угла.
В прямоугольном треугольнике катет, прилегающий к одному из острых углов, равна произведению противоположного катета на единицу, разделенную на тангенс этого угла.
Гипотенузы прямоугольного треугольника равен отношению противоположного одного из острых углов катета к синуса этого угла.
Гипотенузы прямоугольного треугольника равен отношению прилегающего к одному из острых углов катета к косинуса этого угла.
Задача на решение прямоугольных треугольников - это задача на нахождение неизвестных сторон и углов треугольника с его известными углами и сторонами.
При решении прямоугольных треугольников используются теорема Пифагора и его последствия, соотношение между сторонами и углами прямоугольного треугольника и метрические соотношения в прямоугольном треугольнике.
Запомните.
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы и радиуса окружности, описанной около этого треугольника.
Произведение катетов прямоугольного треугольника равна произведению его гипотенузы на высоту, проведенную к гипотенузе.
В прямоугольном треугольнике проекции катетов на гипотенузу относятся как квадраты соответствующих катетов.
К двум плоскостям, имеющим общую линию их пересечения ВС, перпендикулярная плоскость проходит по перпендикуляру к их линии пересечения. Основание пересекается по диаметру АОД (то есть через ось цилиндра, в который вписана призма). а) Рассмотрим основание: расстояние стороны ВС от диаметра равно к = √(8²-(12/2)²) = √64-36) =√28 = 2√7. расстояние от точки А до стороны ВС равно 8-2√7. В сечении будет прямоугольник с основанием 8-2√7 и высотой 24 (по высоте цилиндра и призмы. б) Угол между заданными плоскостями α = arc tg ( 8-2√7)/24 = arc tg 0.112854 = 0.112379 радиан = 6.438818 градусов
Соотношение между сторонами и углами прямоугольного треугольника. Решение прямоугольных треугольников
В прямоугольном треугольнике катет, противоположный одного из острых углов, равна произведению гипотенузы на синус этого угла.
В прямоугольном треугольнике катет, противоположный одного из острых углов, равна произведению прилегающего катета на тангенс этого угла.
В прямоугольном треугольнике катет, прилегающий к одному из острых углов, равна произведению гипотенузы на косинус этого угла.
В прямоугольном треугольнике катет, прилегающий к одному из острых углов, равна произведению противоположного катета на единицу, разделенную на тангенс этого угла.
Гипотенузы прямоугольного треугольника равен отношению противоположного одного из острых углов катета к синуса этого угла.
Гипотенузы прямоугольного треугольника равен отношению прилегающего к одному из острых углов катета к косинуса этого угла.
Задача на решение прямоугольных треугольников - это задача на нахождение неизвестных сторон и углов треугольника с его известными углами и сторонами.
При решении прямоугольных треугольников используются теорема Пифагора и его последствия, соотношение между сторонами и углами прямоугольного треугольника и метрические соотношения в прямоугольном треугольнике.
Запомните.
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы и радиуса окружности, описанной около этого треугольника.
Произведение катетов прямоугольного треугольника равна произведению его гипотенузы на высоту, проведенную к гипотенузе.
В прямоугольном треугольнике проекции катетов на гипотенузу относятся как квадраты соответствующих катетов.
а) Рассмотрим основание:
расстояние стороны ВС от диаметра равно к = √(8²-(12/2)²) = √64-36) =√28 = 2√7.
расстояние от точки А до стороны ВС равно 8-2√7.
В сечении будет прямоугольник с основанием 8-2√7 и высотой 24 (по высоте цилиндра и призмы.
б) Угол между заданными плоскостями α = arc tg ( 8-2√7)/24 =
arc tg 0.112854 = 0.112379 радиан = 6.438818 градусов