изобразите две пересикающиеся прямые. на сколько частей они разбивают плоскость? изобразитетри прямые ,пересикающиеся в одной точке. на сколько частей они разбивают плоскость? изобразите четыре прямые , пересикающиеся в одной точке . на сколько частей они разбивают плоскость?
Угол L и угол K =90 градусам, т. к. это прямоугольник, больше здесь сказать нечего.
Внизу решение, если потребуют найти угол LRM и угол LMR.
1) Начнём с угла L, он равен 90 градусам, это видно из чертежа, а также соответствует правилу : в прямоугольнике каждый угол равен 90 градусам, а сумма всех его углов равна 360 градусам.
2)Отрезок MR образует прямоугольный треугольник, он также является равнобедренным (в данном случае).
Сумма всех угол в треугольнике должна составлять 180 градусов, угол L = 90,
а так как треугольник равнобедренный, то угол LRM=углу LMR, значит
1)180-90:2=45 градусов
2)90-45=45 градусов
Углы LMR и LRM по 45 градусов.
@) Сумма углов n-угольника равна 180°(n-2) где n - число сторон!
180°(n-2)=90n решаем уравнение
n=4 (то есть четырехугольник)
180°(n-2)=60n
n=3 треуголльник
180°(n-2)=120n
n=6 ( шестиугольник)
b) Т.к. ∠А=∠C=60°, значит оба угла в сумме составляют 60°+60°=120°.
Известно, что сумма всех углов в любом четырёхугольнике равняется 360°.
Из этого выходит, что сумма ∠B и ∠D = 360°-120°=240°.
Пусть ∠D - x, ∠B - 1,4x.
Зная, что всего 240°, составим уравнение.
x+1,4x=240;
2,4x=240 | : 2,4;
x=100 = ∠D.
∠B=1,4*x=1,4*100=140°.
ответ: ∠D=100°, ∠B=140°.
c) S10=(10-2)×180°=8×180°= 1440° 10 угольника
d)
900
формула такая 180*(n-2), где n - количество углов выпуклого nрямоугольника семиуголника
Объяснение: